
Package: ipumsr (via r-universe)
October 13, 2024

Title An R Interface for Downloading, Reading, and Handling IPUMS Data

Version 0.8.1.9000

Description An easy way to work with census, survey, and geographic
data provided by IPUMS in R. Generate and download data through
the IPUMS API and load IPUMS files into R with their associated
metadata to make analysis easier. IPUMS data describing 1.4
billion individuals drawn from over 750 censuses and surveys is
available free of charge from the IPUMS website
<https://www.ipums.org>.

License Mozilla Public License 2.0

URL https://tech.popdata.org/ipumsr/, https://github.com/ipums/ipumsr,

https://www.ipums.org

BugReports https://github.com/ipums/ipumsr/issues

Depends R (>= 3.6)

Imports dplyr (>= 0.7.0), haven (>= 2.2.0), hipread (>= 0.2.0), httr,
jsonlite, lifecycle, purrr, R6, readr, rlang, tibble,
tidyselect, xml2, zeallot

Suggests biglm, covr, crayon, DBI, dbplyr, DT, ggplot2, htmltools,
knitr, rmapshaper, rmarkdown, RSQLite (>= 2.3.3), rstudioapi,
scales, sf, shiny, testthat (>= 3.2.0), tidyr, vcr (>= 0.6.0),
withr

VignetteBuilder knitr

Contact ipums@umn.edu

Encoding UTF-8

Roxygen list(markdown = TRUE, r6 = FALSE)

RoxygenNote 7.3.2

Config/testthat/edition 3

Repository https://ipums.r-universe.dev

RemoteUrl https://github.com/ipums/ipumsr

RemoteRef HEAD

RemoteSha 8d90062dc085a8f3536cc65a2a533276de2d4160

1

https://www.ipums.org
https://tech.popdata.org/ipumsr/
https://github.com/ipums/ipumsr
https://www.ipums.org
https://github.com/ipums/ipumsr/issues

2 Contents

Contents

define_extract_micro . 3
define_extract_nhgis . 6
download_extract . 10
get_extract_history . 12
get_extract_info . 14
get_metadata_nhgis . 16
ipums_bind_rows . 20
ipums_collect . 21
ipums_data_collections . 21
ipums_example . 22
ipums_extract-class . 23
ipums_file_info . 24
ipums_list_files . 25
ipums_shape_join . 26
ipums_var_info . 28
ipums_view . 29
ipums_website . 30
lbl . 32
lbl_add . 33
lbl_clean . 34
lbl_define . 35
lbl_na_if . 36
lbl_relabel . 37
read_ipums_ddi . 39
read_ipums_micro . 41
read_ipums_micro_chunked . 44
read_ipums_micro_yield . 48
read_ipums_sf . 52
read_nhgis . 54
read_nhgis_codebook . 56
save_extract_as_json . 58
set_ipums_api_key . 60
set_ipums_default_collection . 61
set_ipums_var_attributes . 62
submit_extract . 64
wait_for_extract . 65
zap_ipums_attributes . 67

Index 69

define_extract_micro 3

define_extract_micro Define an extract request for an IPUMS microdata collection

Description

Define the parameters of an IPUMS microdata extract request to be submitted via the IPUMS API.

The IPUMS API currently supports the following microdata collections:

• IPUMS USA

• IPUMS CPS

• IPUMS International

• IPUMS Time Use (ATUS, AHTUS, MTUS)

• IPUMS Health Surveys (NHIS, MEPS)

Note that not all extract request parameters and options apply to all collections. For a summary of
supported features by collection, see the IPUMS API documentation.

Learn more about the IPUMS API in vignette("ipums-api") and microdata extract definitions
in vignette("ipums-api-micro").

Usage

define_extract_micro(
collection,
description,
samples,
variables = NULL,
time_use_variables = NULL,
sample_members = NULL,
data_format = "fixed_width",
data_structure = "rectangular",
rectangular_on = NULL,
case_select_who = "individuals",
data_quality_flags = NULL

)

Arguments

collection Code for the IPUMS collection represented by this extract request. See ipums_data_collections()
for supported microdata collection codes.

description Description of the extract.

samples Vector of samples to include in the extract request. Use get_sample_info() to
identify sample IDs for a given collection.

variables Vector of variable names or a list of detailed variable specifications to include
in the extract request. Use var_spec() to create a var_spec object containing
a detailed variable specification. See examples.

https://developer.ipums.org/docs/v2/apiprogram/apis/microdata/

4 define_extract_micro

time_use_variables

Vector of names of IPUMS-defined time use variables or a list of specifica-
tions for user-defined time use variables to include in the extract request. Use
tu_var_spec() to create a tu_var_spec object containing a time use variable
specification. See examples.
Time use variables are only available for IPUMS Time Use collections ("atus",
"ahtus", and "mtus").

sample_members Indication of whether to include additional sample members in the extract re-
quest. If provided, must be one of "include_non_respondents", "include_household_members",
or both.
Sample member selection is only available for the IPUMS ATUS collection
("atus").

data_format Format for the output extract data file. Either "fixed_width" or "csv".
Note that while "stata", "spss", and "sas9" are also accepted, these file for-
mats are not supported by ipumsr data-reading functions.
Defaults to "fixed_width".

data_structure Data structure for the output extract data.

• "rectangular" provides data in which every row has the same record
type (determined by "rectangular_on"), with variables from other record
types written onto associated records of the chosen type (e.g. household
variables written onto person records).

• "hierarchical" provides data that include rows of differing record types,
with records ordered according to their hierarchical structure (e.g. each
person record is followed by the activity records for that person).

• "household_only" provides household records only. This data structure is
only available for the IPUMS USA collection ("usa").

Defaults to "rectangular".

rectangular_on If data_structure is "rectangular", records on which to rectangularize. One
of "P" (person), "A" (activity), "I" (injury) or "R" (round).
Defaults to "P" if data_structure is "rectangular" and NULL otherwise.

case_select_who

Indication of how to interpret any case selections included for variables in the
extract definition.

• "individuals" includes records for all individuals who match the speci-
fied case selections.

• "households" includes records for all members of each household that
contains an individual who matches the specified case selections.

Defaults to "individuals". Use var_spec() to add case selections for specific
variables.

data_quality_flags

Set to TRUE to include data quality flags for all applicable variables in the ex-
tract definition. This will override the data_quality_flags specification for
individual variables in the definition.
Use var_spec() to add data quality flags for specific variables.

define_extract_micro 5

Value

An object of class micro_extract containing the extract definition.

See Also

submit_extract() to submit an extract request for processing.

save_extract_as_json() and define_extract_from_json() to share an extract definition.

Examples

usa_extract <- define_extract_micro(
collection = "usa",
description = "2013-2014 ACS Data",
samples = c("us2013a", "us2014a"),
variables = c("SEX", "AGE", "YEAR")

)

usa_extract

Use `var_spec()` to created detailed variable specifications:
usa_extract <- define_extract_micro(

collection = "usa",
description = "Example USA extract definition",
samples = c("us2013a", "us2014a"),
variables = var_spec(
"SEX",
case_selections = "2",
attached_characteristics = c("mother", "father")

)
)

For multiple variables, provide a list of `var_spec` objects and/or
variable names.
cps_extract <- define_extract_micro(

collection = "cps",
description = "Example CPS extract definition",
samples = c("cps2020_02s", "cps2020_03s"),
variables = list(
var_spec("AGE", data_quality_flags = TRUE),
var_spec("SEX", case_selections = "2"),
"RACE"

)
)

cps_extract

To recycle specifications to many variables, it may be useful to
create variables prior to defining the extract:
var_names <- c("AGE", "SEX")

my_vars <- purrr::map(
var_names,

6 define_extract_nhgis

~ var_spec(.x, attached_characteristics = "mother")
)

ipumsi_extract <- define_extract_micro(
collection = "ipumsi",
description = "Extract definition with predefined variables",
samples = c("br2010a", "cl2017a"),
variables = my_vars

)

Extract specifications can be indexed by name
names(ipumsi_extract$samples)

names(ipumsi_extract$variables)

ipumsi_extract$variables$AGE

IPUMS Time Use collections allow selection of IPUMS-defined and
user-defined time use variables:
define_extract_micro(

collection = "atus",
description = "ATUS extract with time use variables",
samples = "at2007",
time_use_variables = list(

"ACT_PCARE",
tu_var_spec(

"MYTIMEUSEVAR",
owner = "example@example.com"

)
)

)

Not run:
Use the extract definition to submit an extract request to the API
submit_extract(usa_extract)

End(Not run)

define_extract_nhgis Define an IPUMS NHGIS extract request

Description

Define the parameters of an IPUMS NHGIS extract request to be submitted via the IPUMS API.

Use get_metadata_nhgis() to browse and identify data sources for use in NHGIS extract defini-
tions. For general information, see the NHGIS data source overview and the FAQ.

Learn more about the IPUMS API in vignette("ipums-api") and NHGIS extract definitions in
vignette("ipums-api-nhgis").

https://www.nhgis.org/data-availability
https://www.nhgis.org/frequently-asked-questions-faq

define_extract_nhgis 7

Usage

define_extract_nhgis(
description = "",
datasets = NULL,
time_series_tables = NULL,
shapefiles = NULL,
geographic_extents = NULL,
breakdown_and_data_type_layout = NULL,
tst_layout = NULL,
data_format = NULL

)

Arguments

description Description of the extract.

datasets List of dataset specifications for any datasets to include in the extract request.
Use ds_spec() to create a ds_spec object containing a dataset specification.
See examples.

time_series_tables

List of time series table specifications for any time series tables to include in the
extract request. Use tst_spec() to create a tst_spec object containing a time
series table specification. See examples.

shapefiles Names of any shapefiles to include in the extract request.
geographic_extents

Vector of geographic extents to use for all of the datasets in the extract defini-
tion (for instance, to obtain data within a particular state). Use "*" to select all
available extents.
Required when any of the datasets included in the extract definition include
geog_levels that require extent selection. See get_metadata_nhgis() to de-
termine if a geographic level requires extent selection. At the time of writing,
NHGIS supports extent selection only for blocks and block groups.

breakdown_and_data_type_layout

The desired layout of any datasets that have multiple data types or breakdown
values.

• "single_file" (default) keeps all data types and breakdown values in one
file

• "separate_files" splits each data type or breakdown value into its own
file

Required if any datasets included in the extract definition consist of multiple
data types (for instance, estimates and margins of error) or have multiple break-
down values specified. See get_metadata_nhgis() to determine whether a
requested dataset has multiple data types.

tst_layout The desired layout of all time_series_tables included in the extract defini-
tion.

• "time_by_column_layout" (wide format, default): rows correspond to ge-
ographic units, columns correspond to different times in the time series

https://www.nhgis.org/overview-nhgis-datasets
https://www.nhgis.org/time-series-tables
https://www.nhgis.org/gis-files

8 define_extract_nhgis

• "time_by_row_layout" (long format): rows correspond to a single geo-
graphic unit at a single point in time

• "time_by_file_layout": data for different times are provided in separate
files

Required when an extract definition includes any time_series_tables.

data_format The desired format of the extract data file.

• "csv_no_header" (default) includes only a minimal header in the first row
• "csv_header" includes a second, more descriptive header row.
• "fixed_width" provides data in a fixed width format

Note that by default, read_nhgis() removes the additional header row in "csv_header"
files.
Required when an extract definition includes any datasets or time_series_tables.

Details

An NHGIS extract definition must include at least one dataset, time series table, or shapefile speci-
fication.

Create an NHGIS dataset specification with ds_spec(). Each dataset must be associated with a
selection of data_tables and geog_levels. Some datasets also support the selection of years
and breakdown_values.

Create an NHGIS time series table specification with tst_spec(). Each time series table must be
associated with a selection of geog_levels and may optionally be associated with a selection of
years.

See examples or vignette("ipums-api-nhgis") for more details about specifying datasets and
time series tables in an NHGIS extract definition.

Value

An object of class nhgis_extract containing the extract definition.

See Also

get_metadata_nhgis() to find data to include in an extract definition.

submit_extract() to submit an extract request for processing.

save_extract_as_json() and define_extract_from_json() to share an extract definition.

Examples

Extract definition for tables from an NHGIS dataset
Use `ds_spec()` to create an NHGIS dataset specification
nhgis_extract <- define_extract_nhgis(
description = "Example NHGIS extract",
datasets = ds_spec(

"1990_STF3",
data_tables = "NP57",
geog_levels = c("county", "tract")

)

define_extract_nhgis 9

)

nhgis_extract

Use `tst_spec()` to create an NHGIS time series table specification
define_extract_nhgis(

description = "Example NHGIS extract",
time_series_tables = tst_spec("CL8", geog_levels = "county"),
tst_layout = "time_by_row_layout"

)

To request multiple datasets, provide a list of `ds_spec` objects
define_extract_nhgis(

description = "Extract definition with multiple datasets",
datasets = list(
ds_spec("2014_2018_ACS5a", "B01001", c("state", "county")),
ds_spec("2015_2019_ACS5a", "B01001", c("state", "county"))

)
)

If you need to specify the same table or geographic level for
many datasets, you may want to make a set of datasets before defining
your extract request:
dataset_names <- c("2014_2018_ACS5a", "2015_2019_ACS5a")

dataset_spec <- purrr::map(
dataset_names,
~ ds_spec(

.x,
data_tables = "B01001",
geog_levels = c("state", "county")

)
)

define_extract_nhgis(
description = "Extract definition with multiple datasets",
datasets = dataset_spec

)

You can request datasets, time series tables, and shapefiles in the same
definition:
define_extract_nhgis(

description = "Extract with datasets and time series tables",
datasets = ds_spec("1990_STF1", c("NP1", "NP2"), "county"),
time_series_tables = tst_spec("CL6", "state"),
shapefiles = "us_county_1990_tl2008"

)

Geographic extents are applied to all datasets in the definition
define_extract_nhgis(

description = "Extent selection",
datasets = list(

ds_spec("2018_2022_ACS5a", "B01001", "blck_grp"),

10 download_extract

ds_spec("2017_2021_ACS5a", "B01001", "blck_grp")
),
geographic_extents = c("010", "050")

)

Extract specifications can be indexed by name
names(nhgis_extract$datasets)

nhgis_extract$datasets[["1990_STF3"]]

Not run:
Use the extract definition to submit an extract request to the API
submit_extract(nhgis_extract)

End(Not run)

download_extract Download a completed IPUMS data extract

Description

Download IPUMS data extract files via the IPUMS API and save them on your computer.

Learn more about the IPUMS API in vignette("ipums-api").

Usage

download_extract(
extract,
download_dir = getwd(),
overwrite = FALSE,
progress = TRUE,
api_key = Sys.getenv("IPUMS_API_KEY")

)

Arguments

extract One of:

• An ipums_extract object
• The data collection and extract number formatted as a string of the form
"collection:number" or as a vector of the form c("collection", number)

• An extract number to be associated with your default IPUMS collection.
See set_ipums_default_collection()

For a list of codes used to refer to each collection, see ipums_data_collections().

download_dir Path to the directory where the files should be written. Defaults to current work-
ing directory.

overwrite If TRUE, overwrite files with the same name that already exist in download_dir.
Defaults to FALSE.

download_extract 11

progress If TRUE, output progress bar showing the status of the download request. De-
faults to TRUE.

api_key API key associated with your user account. Defaults to the value of the IPUMS_API_KEY
environment variable. See set_ipums_api_key().

Details

For NHGIS extracts, data files and GIS files (shapefiles) will be saved in separate .zip archives.
download_extract() will return a character vector including the file paths to all downloaded files.

For microdata extracts, only the file path to the downloaded .xml DDI file will be returned, as it is
sufficient for reading the data provided in the associated .dat.gz data file.

Value

The path(s) to the files required to read the data requested in the extract, invisibly.

For NHGIS, paths will be named with either "data" (for tabular data files) or "shape" (for spatial
data files) to indicate the type of data the file contains.

See Also

read_ipums_micro() or read_nhgis() to read tabular data from an IPUMS extract.

read_ipums_sf() to read spatial data from an IPUMS extract.

ipums_list_files() to list files in an IPUMS extract.

Examples

usa_extract <- define_extract_micro(
collection = "usa",
description = "2013-2014 ACS Data",
samples = c("us2013a", "us2014a"),
variables = c("SEX", "AGE", "YEAR")

)

Not run:
submitted_extract <- submit_extract(usa_extract)

downloadable_extract <- wait_for_extract(submitted_extract)

For microdata, the path to the DDI .xml codebook file is provided.
usa_xml_file <- download_extract(downloadable_extract)

Load with a `read_ipums_micro_*()` function
usa_data <- read_ipums_micro(usa_xml_file)

You can also download previous extracts with their collection and number:
nhgis_files <- download_extract("nhgis:1")

NHGIS extracts return a path to both the tabular and spatial data files,
as applicable.
nhgis_data <- read_nhgis(data = nhgis_files["data"])

12 get_extract_history

Load NHGIS spatial data
nhgis_geog <- read_ipums_sf(data = nhgis_files["shape"])

End(Not run)

get_extract_history Browse definitions of previously submitted extract requests

Description

Retrieve definitions of an arbitrary number of previously submitted extract requests for a given
IPUMS collection, starting from the most recent extract request.

To check the status of a particular extract request, use get_extract_info().

Learn more about the IPUMS API in vignette("ipums-api").

Usage

get_extract_history(
collection = NULL,
how_many = 10,
delay = 0,
api_key = Sys.getenv("IPUMS_API_KEY")

)

Arguments

collection Character string of the IPUMS collection for which to retrieve extract history.
Defaults to the current default collection, if it exists. See set_ipums_default_collection().
For a list of codes used to refer to each collection, see ipums_data_collections().

how_many The number of extract requests for which to retrieve information. Defaults to
the 10 most recent extracts.

delay Number of seconds to delay between successive API requests, if multiple re-
quests are needed to retrieve all records.
A delay is highly unlikely to be necessary and is intended only as a fallback in
the event that you cannot retrieve your extract history without exceeding the API
rate limit.

api_key API key associated with your user account. Defaults to the value of the IPUMS_API_KEY
environment variable. See set_ipums_api_key().

Value

A list of ipums_extract objects

See Also

get_extract_info() to get the current status of a specific extract request.

get_extract_history 13

Examples

Not run:
Get information for most recent extract requests.
By default gets the most recent 10 extracts
get_extract_history("usa")

Return only the most recent 3 extract definitions
get_extract_history("cps", how_many = 3)

To get the most recent extract (for instance, if you have forgotten its
extract number), use `get_last_extract_info()`
get_last_extract_info("nhgis")

End(Not run)

To browse your extract history by particular criteria, you can
loop through the extract objects. We'll create a sample list of 2 extracts:
extract1 <- define_extract_micro(

collection = "usa",
description = "2013 ACS",
samples = "us2013a",
variables = var_spec(
"SEX",
case_selections = "2",
data_quality_flags = TRUE

)
)

extract2 <- define_extract_micro(
collection = "usa",
description = "2014 ACS",
samples = "us2014a",
variables = list(

var_spec("RACE"),
var_spec(

"SEX",
case_selections = "1",
data_quality_flags = FALSE

)
)

)

extracts <- list(extract1, extract2)

`purrr::keep()`` is particularly useful for filtering:
purrr::keep(extracts, ~ "RACE" %in% names(.x$variables))

purrr::keep(extracts, ~ grepl("2014 ACS", .x$description))

You can also filter on variable-specific criteria
purrr::keep(extracts, ~ isTRUE(.x$variables[["SEX"]]$data_quality_flags))

14 get_extract_info

To filter based on all variables in an extract, you'll need to
create a nested loop. For instance, to find all extracts that have
any variables with data_quality_flags:
purrr::keep(

extracts,
function(extract) {
any(purrr::map_lgl(

names(extract$variables),
function(var) isTRUE(extract$variables[[var]]$data_quality_flags)

))
}

)

To peruse your extract history without filtering, `purrr::map()` is more
useful
purrr::map(extracts, ~ names(.x$variables))

purrr::map(extracts, ~ names(.x$samples))

purrr::map(extracts, ~ .x$variables[["RACE"]]$case_selections)

Once you have identified a past extract, you can easily download or
resubmit it
Not run:
extracts <- get_extract_history("nhgis")

extract <- purrr::keep(
extracts,
~ "CW3" %in% names(.x$time_series_tables)

)

download_extract(extract[[1]])

End(Not run)

get_extract_info Retrieve the definition and latest status of an extract request

Description

Retrieve the latest status of an extract request.

get_last_extract_info() is a convenience function to retrieve the most recent extract for a given
collection.

To browse definitions of your previously submitted extract requests, see get_extract_history().

Learn more about the IPUMS API in vignette("ipums-api").

get_extract_info 15

Usage

get_extract_info(extract, api_key = Sys.getenv("IPUMS_API_KEY"))

get_last_extract_info(collection = NULL, api_key = Sys.getenv("IPUMS_API_KEY"))

Arguments

extract One of:

• An ipums_extract object
• The data collection and extract number formatted as a string of the form
"collection:number" or as a vector of the form c("collection", number)

• An extract number to be associated with your default IPUMS collection.
See set_ipums_default_collection()

For a list of codes used to refer to each collection, see ipums_data_collections().

api_key API key associated with your user account. Defaults to the value of the IPUMS_API_KEY
environment variable. See set_ipums_api_key().

collection Character string of the IPUMS collection for which to retrieve extract history.
Defaults to the current default collection, if it exists. See set_ipums_default_collection().
For a list of codes used to refer to each collection, see ipums_data_collections().

Value

An ipums_extract object.

See Also

get_extract_history() to browse past extract definitions

wait_for_extract() to wait for an extract to finish processing.

download_extract() to download an extract’s data files.

save_extract_as_json() and define_extract_from_json() to share an extract definition.

Examples

my_extract <- define_extract_micro(
collection = "usa",
description = "2013-2014 ACS Data",
samples = c("us2013a", "us2014a"),
variables = c("SEX", "AGE", "YEAR")

)

Not run:
submitted_extract <- submit_extract(my_extract)

Get latest info for the request associated with a given `ipums_extract`
object:
updated_extract <- get_extract_info(submitted_extract)

16 get_metadata_nhgis

updated_extract$status

Or specify the extract collection and number:
get_extract_info("usa:1")
get_extract_info(c("usa", 1))

If you have a default collection, you can use the extract number alone:
set_ipums_default_collection("nhgis")
get_extract_info(1)

To get the most recent extract (for instance, if you have forgotten its
extract number), use `get_last_extract_info()`
get_last_extract_info("nhgis")

End(Not run)

get_metadata_nhgis List available data sources from IPUMS NHGIS

Description

Retrieve information about available NHGIS data sources, including datasets, data tables (summary
tables), time series tables, and shapefiles (GIS files).

To retrieve summary metadata for all available data sources of a particular type, use the type ar-
gument. To retrieve detailed metadata for a single data source, use the dataset, data_table, or
time_series_table argument. See the metadata availability section below for information on the
metadata provided for each data type.

For general information, see the NHGIS data source overview and the FAQ.

Learn more about the IPUMS API in vignette("ipums-api") and NHGIS extract definitions in
vignette("ipums-api-nhgis").

Usage

get_metadata_nhgis(
type = NULL,
dataset = NULL,
data_table = NULL,
time_series_table = NULL,
delay = 0,
api_key = Sys.getenv("IPUMS_API_KEY")

)

Arguments

type One of "datasets", "data_tables", "time_series_tables", or "shapefiles"
indicating the type of summary metadata to retrieve. Leave NULL if requesting
metadata for a single dataset, data_table, or time_series_table.

https://www.nhgis.org/overview-nhgis-datasets
https://www.nhgis.org/time-series-tables
https://www.nhgis.org/gis-files
https://www.nhgis.org/data-availability
https://www.nhgis.org/frequently-asked-questions-faq

get_metadata_nhgis 17

dataset Name of an individual dataset for which to retrieve metadata.

data_table Name of an individual data table for which to retrieve metadata. If provided, an
associated dataset must also be specified.

time_series_table

Name of an individual time series table for which to retrieve metadata.

delay Number of seconds to delay between successive API requests, if multiple re-
quests are needed to retrieve all records.
A delay is highly unlikely to be necessary and is intended only as a fallback in
the event that you cannot retrieve all metadata records without exceeding the
API rate limit.
Only used if type is provided.

api_key API key associated with your user account. Defaults to the value of the IPUMS_API_KEY
environment variable. See set_ipums_api_key().

Value

If type is provided, a tibble of summary metadata for all data sources of the provided type. Oth-
erwise, a named list of metadata for the specified dataset, data_table, or time_series_table.

Metadata availability

The following sections summarize the metadata fields provided for each data type. Summary meta-
data include a subset of the fields provided for individual data sources.

Datasets::
• name: The unique identifier for the dataset. This is the value that is used to refer to the dataset

when interacting with the IPUMS API.
• group: The group of datasets to which the dataset belongs. For instance, 5 separate datasets

are part of the "2015 American Community Survey" group.
• description: A short description of the dataset.
• sequence: Order in which the dataset will appear in the metadata API and extracts.
• has_multiple_data_types: Logical value indicating whether multiple data types exist for

this dataset. For example, ACS datasets include both estimates and margins of error.
• data_tables: A tibble containing names, codes, and descriptions for all data tables avail-

able for the dataset.
• geog_levels: A tibble containing names, descriptions, and extent information for the

geographic levels available for the dataset. The has_geog_extent_selection field contains
logical values indicating whether extent selection is allowed (and required) for the associated
geographic level. See geographic_instances below.

• breakdowns: A tibble containing names, types, descriptions, and breakdown values for all
breakdowns available for the dataset.

• years: A vector of years for which the dataset is available. This field is only present if
a dataset is available for multiple years. Note that ACS datasets are not considered to be
available for multiple years.

• geographic_instances: A tibble containing names and descriptions for all valid geo-
graphic extents for the dataset. This field is only present if at least one of the dataset’s
geog_levels allows geographic extent selection.

18 get_metadata_nhgis

Data tables::

• name: The unique identifier for the data table within its dataset. This is the value that is used
to refer to the data table when interacting with the IPUMS API.

• description: A short description of the data table.
• universe: The statistical population measured by this data table (e.g. persons, families,

occupied housing units, etc.)
• nhgis_code: The code identifying the data table in the extract. Variables in the extract data

will include column names prefixed with this code.
• sequence: Order in which the data table will appear in the metadata API and extracts.
• dataset_name: Name of the dataset to which this data table belongs.
• n_variables: Number of variables included in this data table.
• variables: A tibble containing variable descriptions and codes for the variables included

in the data table

Time series tables::

• name: The unique identifier for the time series table. This is the value that is used to refer to
the time series table when interacting with the IPUMS API.

• description: A short description of the time series table.
• geographic_integration: The method by which the time series table aligns geographic

units across time. "Nominal" integration indicates that geographic units are aligned by name
(disregarding changes in unit boundaries). "Standardized" integration indicates that data
from multiple time points are standardized to the indicated year’s census units. For more
information, click here.

• sequence: Order in which the time series table will appear in the metadata API and extracts.
• time_series: A tibble containing names and descriptions for the individual time series

available for the time series table.
• years: A tibble containing information on the available data years for the time series table.
• geog_levels: A tibble containing names and descriptions for the geographic levels avail-

able for the time series table.

Shapefiles::

• name: The unique identifier for the shapefile. This is the value that is used to refer to the
shapefile when interacting with the IPUMS API.

• year: The survey year in which the shapefile’s represented areas were used for tabulations,
which may be different than the vintage of the represented areas. For more information, click
here.

• geographic_level: The geographic level of the shapefile.
• extent: The geographic extent covered by the shapefile.
• basis: The derivation source of the shapefile.
• sequence: Order in which the shapefile will appear in the metadata API and extracts.

See Also

define_extract_nhgis() to create an IPUMS NHGIS extract definition.

https://www.nhgis.org/time-series-tables#geographic-integration
https://www.nhgis.org/gis-files#years

get_metadata_nhgis 19

Examples

Not run:
library(dplyr)

Get summary metadata for all available sources of a given data type
get_metadata_nhgis("datasets")

Filter to identify data sources of interest by their metadata values
all_tsts <- get_metadata_nhgis("time_series_tables")

tsts <- all_tsts %>%
filter(
grepl("Children", description),
grepl("Families", description),
geographic_integration == "Standardized to 2010"

)

tsts$name

Get detailed metadata for a single source with its associated argument:
cs5_meta <- get_metadata_nhgis(time_series_table = "CS5")
cs5_meta$geog_levels

Use the available values when defining an NHGIS extract request
define_extract_nhgis(

time_series_tables = tst_spec("CS5", geog_levels = "state")
)

Detailed metadata is also provided for datasets and data tables
get_metadata_nhgis(dataset = "1990_STF1")
get_metadata_nhgis(data_table = "NP1", dataset = "1990_STF1")

Iterate over data sources to retrieve detailed metadata for several
records. For instance, to get variable metadata for a set of data tables:
tables <- c("NP1", "NP2", "NP10")

var_meta <- purrr::map(
tables,
function(dt) {

dt_meta <- get_metadata_nhgis(dataset = "1990_STF1", data_table = dt)

This ensures you avoid hitting rate limit for large numbers of tables
Sys.sleep(1)

dt_meta$variables
}

)

End(Not run)

20 ipums_bind_rows

ipums_bind_rows Bind multiple data frames by row, preserving labelled attributes

Description

Analogous to dplyr::bind_rows(), but preserves the labelled attributes provided with IPUMS
data.

Usage

ipums_bind_rows(..., .id = NULL)

Arguments

... Data frames or tibbles to combine. Each argument can be a data frame or a list
of data frames. When binding, columns are matched by name. Missing columns
will be filled with NA.

.id The name of an optional identifier column. Provide a string to create an out-
put column that identifies each input. The column will use names if available,
otherwise it will use positions.

Value

Returns the same type as the first input. Either a data.frame, tbl_df, or grouped_df

Examples

file <- ipums_example("nhgis0712_csv.zip")

d1 <- read_nhgis(
file,
file_select = 1,
verbose = FALSE

)

d2 <- read_nhgis(
file,
file_select = 2,
verbose = FALSE

)

Variables have associated label attributes:
ipums_var_label(d1$PMSAA)

Preserve labels when binding data sources:
d <- ipums_bind_rows(d1, d2)
ipums_var_label(d$PMSAA)

dplyr `bind_rows()` drops labels:

ipums_collect 21

d <- dplyr::bind_rows(d1, d2)
ipums_var_label(d$PMSAA)

ipums_collect Collect data into R session with IPUMS attributes

Description

Convenience wrapper around dplyr’s collect() and set_ipums_var_attributes(). Use this to
attach variable labels when collecting data from a database.

Usage

ipums_collect(data, ddi, var_attrs = c("val_labels", "var_label", "var_desc"))

Arguments

data A dplyr tbl object (generally a tbl_lazy object stored in a database).

ddi An ipums_ddi object created with read_ipums_ddi().

var_attrs Variable attributes to add to the output. Defaults to all available attributes. See
set_ipums_var_attributes() for more details.

Value

A local tibble with the requested attributes attached.

ipums_data_collections

List IPUMS data collections

Description

List IPUMS data collections with their corresponding codes used by the IPUMS API. Note that
some data collections do not yet have API support.

Currently, ipumsr supports extract definitions for the following collections:

• IPUMS USA ("usa")

• IPUMS CPS ("cps")

• IPUMS International ("ipumsi")

• IPUMS Time Use ("atus", "ahtus", "mtus")

• IPUMS Health Surveys ("nhis", "meps")

• IPUMS NHGIS ("nhgis")

Learn more about the IPUMS API in vignette("ipums-api").

22 ipums_example

Usage

ipums_data_collections()

Value

A tibble with four columns containing the full collection name, the type of data the collection pro-
vides, the collection code used by the IPUMS API, and the status of API support for the collection.

Examples

ipums_data_collections()

ipums_example Get path to IPUMS example datasets

Description

Construct file path to example extracts included with ipumsr. These data are used in package exam-
ples and can be used to experiment with ipumsr functionality.

Usage

ipums_example(path = NULL)

Arguments

path Name of file. If NULL, all available example files will be listed.

Value

The path to a specific example file or a vector of all available files.

Examples

List all available example files
ipums_example()

Get path to a specific example file
file <- ipums_example("cps_00157.xml")

read_ipums_micro(file)

ipums_extract-class 23

ipums_extract-class ipums_extract class

Description

The ipums_extract class provides a data structure for storing the extract definition and status of
an IPUMS data extract request. Both submitted and unsubmitted extract requests are stored in
ipums_extract objects.

ipums_extract objects are further divided into microdata and aggregate data classes, and will also
include a collection-specific extract subclass to accommodate differences in extract options and
content across collections.

Currently supported collections are:

• IPUMS microdata

– IPUMS USA
– IPUMS CPS
– IPUMS International
– IPUMS Time Use (ATUS, AHTUS, MTUS)
– IPUMS Health Surveys (NHIS, MEPS)

• IPUMS aggregate data

– IPUMS NHGIS

Learn more about the IPUMS API in vignette("ipums-api").

Properties

Objects of class ipums_extract have:

• A class attribute of the form c("{collection}_extract", "{collection_type}_extract",
"ipums_extract"). For instance, c("cps_extract", "micro_extract", "ipums_extract").

• A base type of "list".

• A names attribute that is a character vector the same length as the underlying list.

All ipums_extract objects will include several core fields identifying the extract and its status:

• collection: the collection for the extract request.

• description: the description of the extract request.

• submitted: logical indicating whether the extract request has been submitted to the IPUMS
API for processing.

• download_links: links to the downloadable data, if the extract request was completed at the
time it was last checked.

• number: the number of the extract request. With collection, this uniquely identifies an
extract request for a given user.

• status: status of the extract request at the time it was last checked. One of "unsubmitted",
"queued", "started", "produced", "canceled", "failed", or "completed".

24 ipums_file_info

Creating or obtaining an extract

• Create an ipums_extract object from scratch with the appropriate define_extract_*()
function.

– For microdata extracts, use define_extract_micro()

– For NHGIS extracts, use define_extract_nhgis()

• Use get_extract_info() to get the definition and latest status of a previously-submitted
extract request.

• Use get_extract_history() to get the definitions and latest status of multiple previously-
submitted extract requests.

Submitting an extract

• Use submit_extract() to submit an extract request for processing through the IPUMS API.

• Use wait_for_extract() to periodically check the status of a submitted extract request until
it is ready to download.

• Use is_extract_ready() to manually check whether a submitted extract request is ready to
download.

Downloading an extract

• Download the data contained in a completed extract with download_extract().

Saving an extract

• Save an extract to a JSON-formatted file with save_extract_as_json().

• Create an ipums_extract object from a saved JSON-formatted definition with define_extract_from_json().

ipums_file_info Get file information for an IPUMS extract

Description

Get information about the IPUMS project, date, notes, conditions, and citation requirements for an
extract based on an ipums_ddi object.

ipums_conditions() is a convenience function that provides conditions and citation information
for a recently loaded dataset.

Usage

ipums_file_info(object, type = NULL)

ipums_conditions(object = NULL)

ipums_list_files 25

Arguments

object An ipums_ddi object.
For ipums_conditions(), leave NULL to display conditions for most recently
loaded dataset.

type Type of file information to display. If NULL, loads all types. Otherwise, one
of "ipums_project", "extract_date", "extract_notes", "conditions" or
"citation".

Value

For ipums_file_info(), if type = NULL, a named list of metadata information. Otherwise, a string
containing the requested information.

Examples

ddi <- read_ipums_ddi(ipums_example("cps_00157.xml"))

ipums_file_info(ddi)

ipums_list_files List files contained within a zipped IPUMS extract

Description

Identify the files that can be read from an IPUMS extract.

Usage

ipums_list_files(
file,
file_select = NULL,
types = NULL,
data_layer = deprecated(),
shape_layer = deprecated(),
raster_layer = deprecated()

)

Arguments

file Path to a .zip archive containing the IPUMS extract to be examined.

file_select If the path in file contains multiple files, a tidyselect selection identifying the
files to be included in the output. Only files that match the provided expression
will be included.
While less useful, this can also be provided as a string specifying an exact file
name or an integer to match files by index position.

26 ipums_shape_join

types One or more of "data" or "shape" indicating the type of files to include in the
output. "data" refers to tabular data sources, while "shape" refers to spatial
data sources.
The use of "raster" has been deprecated and will be removed in a future re-
lease.

data_layer, shape_layer, raster_layer
[Deprecated] Please use file_select instead.

Value

A tibble containing the types and names of the available files.

See Also

read_ipums_micro() or read_nhgis() to read tabular data from an IPUMS extract.

read_ipums_sf() to read spatial data from an IPUMS extract.

Examples

nhgis_file <- ipums_example("nhgis0712_csv.zip")

2 available files in this extract
ipums_list_files(nhgis_file)

Look for files that match a particular pattern:
ipums_list_files(nhgis_file, file_select = matches("ds136"))

ipums_shape_join Join tabular data to geographic boundaries

Description

These functions are analogous to dplyr’s joins, except that:

• They operate on a data frame and an sf object

• They retain the variable attributes provided in IPUMS files and loaded by ipumsr data-reading
functions

• They handle minor incompatibilities between attributes in spatial and tabular data that emerge
in some IPUMS files

Usage

ipums_shape_left_join(
data,
shape_data,
by,
suffix = c("", "SHAPE"),

ipums_shape_join 27

verbose = TRUE
)

ipums_shape_right_join(
data,
shape_data,
by,
suffix = c("", "SHAPE"),
verbose = TRUE

)

ipums_shape_inner_join(
data,
shape_data,
by,
suffix = c("", "SHAPE"),
verbose = TRUE

)

ipums_shape_full_join(
data,
shape_data,
by,
suffix = c("", "SHAPE"),
verbose = TRUE

)

Arguments

data A tibble or data frame. Typically, this will contain data that has been aggregated
to a specific geographic level.

shape_data An sf object loaded with read_ipums_sf().

by Character vector of variables to join by. See dplyr::left_join() for syntax.

suffix If there are non-joined duplicate variables in the two data sources, these suffixes
will be added to the output to disambiguate them. Should be a character vector
of length 2.
Defaults to adding the "SHAPE" suffix to duplicated variables in shape_file.

verbose If TRUE, display information about any geometries that were unmatched during
the join.

Value

An sf object containing the joined data

Examples

data <- read_nhgis(
ipums_example("nhgis0972_csv.zip"),

28 ipums_var_info

verbose = FALSE
)

sf_data <- read_ipums_sf(ipums_example("nhgis0972_shape_small.zip"))
joined_data <- ipums_shape_inner_join(data, sf_data, by = "GISJOIN")

colnames(joined_data)

ipums_var_info Get contextual information about variables in an IPUMS data source

Description

Summarize the variable metadata for the variables found in an ipums_ddi object or data frame.
Provides descriptions of variable content (var_label and var_desc) as well as labels of particular
values for each variable (val_labels).

ipums_var_info() produces a tibble summary of multiple variables at once.

ipums_var_label(), ipums_var_desc(), and ipums_val_labels() provide specific metadata
for a single variable.

Usage

ipums_var_info(object, vars = NULL)

ipums_var_label(object, var = NULL)

ipums_var_desc(object, var = NULL)

ipums_val_labels(object, var = NULL)

Arguments

object An ipums_ddi object, a data frame containing variable metadata (as produced
by most ipumsr data-reading functions), or a haven::labelled() vector from
a single column in such a data frame.

vars, var A tidyselect selection identifying the variable(s) to include in the output. Only
ipums_var_info() allows for the selection of multiple variables.

Details

For ipums_var_info(), if the provided object is a haven::labelled() vector (i.e. a single
column from a data frame), the summary output will include the variable label, variable description,
and value labels, if applicable.

If it is a data frame, the same information will be provided for all variables present in the data or to
those indicated in vars.

ipums_view 29

If it is an ipums_ddi object, the summary will also include information used when reading the data
from disk, including start/end positions for columns in the fixed-width file, implied decimals, and
variable types.

Providing an ipums_ddi object is the most robust way to access variable metadata, as many data
processing operations will remove these attributes from data frame-like objects.

Value

For ipums_var_info(), a tibble containing variable information.

Otherwise, a length-1 character vector with the requested variable information.

See Also

read_ipums_ddi() or read_nhgis_codebook() to read IPUMS metadata files.

Examples

ddi <- read_ipums_ddi(ipums_example("cps_00157.xml"))

Info for all variables in a data source
ipums_var_info(ddi)

Metadata for individual variables
ipums_var_desc(ddi, MONTH)

ipums_var_label(ddi, MONTH)

ipums_val_labels(ddi, MONTH)

NHGIS also supports variable-level metadata, though many fields
are not relevant and remain blank:
cb <- read_nhgis_codebook(ipums_example("nhgis0972_csv.zip"))

ipums_var_info(cb)

ipums_view View a static webpage with variable metadata from an IPUMS extract

Description

For a given ipums_ddi object or data frame, display metadata about its contents in the RStudio
viewer pane. This includes extract-level information as well as metadata for the variables included
in the input object.

It is also possible to save the output to an external HTML file without launching the RStudio viewer.

Usage

ipums_view(x, out_file = NULL, launch = TRUE)

30 ipums_website

Arguments

x An ipums_ddi object or a data frame with IPUMS attributes attached.
Note that file-level information (e.g. extract notes) is only available when x is
an ipums_ddi object.

out_file Optional location to save the output HTML file. If NULL, makes a temporary file.

launch Logical indicating whether to launch the HTML file in the RStudio viewer pane.
If TRUE, RStudio and rstudioapi must be available.

Details

ipums_view() requires that the htmltools, shiny, and DT packages are installed. If launch = TRUE,
RStudio and the rstudioapi package must also be available.

Note that if launch = FALSE and out_file is unspecified, the output file will be written to a tempo-
rary directory. Some operating systems may be unable to open the HTML file from the temporary
directory; we suggest that you manually specify the out_file location in this case.

Value

The file path to the output HTML file (invisibly, if launch = TRUE)

Examples

ddi <- read_ipums_ddi(ipums_example("cps_00157.xml"))

Not run:
ipums_view(ddi)
ipums_view(ddi, "codebook.html", launch = FALSE)

End(Not run)

ipums_website Launch a browser window to an IPUMS metadata page

Description

Launch the documentation webpage for a given IPUMS project and variable. The project can be
provided in the form of an ipums_ddi object or can be manually specified.

This provides access to more extensive variable metadata than may be contained within an ipums_ddi
object itself.

Note that some IPUMS projects (e.g. IPUMS NHGIS) do not have variable-specific pages. In these
cases, ipums_website() will launch the project’s main data selection page.

ipums_website 31

Usage

ipums_website(
x,
var = NULL,
launch = TRUE,
verbose = TRUE,
homepage_if_missing = FALSE,
project = deprecated(),
var_label = deprecated()

)

Arguments

x An ipums_ddi object or the name of an IPUMS project. See ipums_data_collections()
for supported projects.

var Name of the variable to load. If NULL, provides the URL to the project’s main
data selection site.

launch If TRUE, launch a browser window to the metadata webpage. Otherwise, return
the URL for the webpage.

verbose If TRUE, produce warnings when invalid URL specifications are detected.
homepage_if_missing

If TRUE, return the IPUMS homepage if the IPUMS project in x is not recog-
nized.

project [Deprecated] Please use x instead.

var_label [Deprecated] Variable label for the provided var. This is typically obtained
from the input ipums_ddi object and is unlikely to be needed.

Details

If launch = TRUE, you will need a valid registration for the specified project to successfully launch
the webpage.

Not all IPUMS variables are found at webpages that exactly match the variable names that are
included in completed extract files (and ipums_ddi objects). Therefore, there may be some projects
and variables for which ipums_website() will launch the page for a different variable or an invalid
page.

Value

The URL to the IPUMS webpage for the indicated project and variable (invisibly if launch = TRUE)

Examples

ddi <- read_ipums_ddi(ipums_example("cps_00157.xml"))

Not run:
Launch webpage for particular variable
ipums_website(ddi, "MONTH")

32 lbl

End(Not run)

Can also specify an IPUMS project instead of an `ipums_ddi` object
ipums_website("IPUMS CPS", var = "RECTYPE", launch = FALSE)

Shorthand project names from `ipums_data_collections()` are also accepted:
ipums_website("ipumsi", var = "YEAR", launch = FALSE)

lbl Make a label placeholder object

Description

Define a new label/value pair. For use in functions like lbl_relabel() and lbl_add().

Usage

lbl(...)

Arguments

... Either one or two arguments specifying the label (.lbl) and value (.val) to use
in the new label pair.
If arguments are named, they must be named .val and/or .lbl.
If a single unnamed value is passed, it is used as the .lbl for the new label.
If two unnamed values are passed, they are used as the .val and .lbl, respec-
tively.

Details

Several lbl_*() functions include arguments that can be passed a function of .val and/or .lbl.
These refer to the existing values and labels in the input vector, respectively.

Use .val to refer to the values in the vector’s value labels. Use .lbl to refer to the label names in
the vector’s value labels.

Note that not all lbl_*() functions support both of these arguments.

Value

A label_placeholder object

See Also

Other lbl_helpers: lbl_add(), lbl_clean(), lbl_define(), lbl_na_if(), lbl_relabel(), zap_ipums_attributes()

lbl_add 33

Examples

Label placeholder with no associated value
lbl("New label")

Label placeholder with a value/label pair
lbl(10, "New label")

Use placeholders as inputs to other label handlers
x <- haven::labelled(

c(100, 200, 105, 990, 999, 230),
c(`Unknown` = 990, NIU = 999)

)

x <- lbl_add(
x,
lbl(100, "$100"),
lbl(105, "$105"),
lbl(200, "$200"),
lbl(230, "$230")

)

lbl_relabel(x, lbl(9999, "Missing") ~ .val > 900)

lbl_add Add labels for unlabelled values

Description

Add labels for values that don’t already have them in a labelled vector.

Usage

lbl_add(x, ...)

lbl_add_vals(x, labeller = as.character, vals = NULL)

Arguments

x A labelled vector

... Arbitrary number of label placeholders created with lbl() indicating the value/label
pairs to add.

labeller A function that takes values being added as an argument and returns the labels
to associate with those values. By default, uses the values themselves after con-
verting to character.

vals Vector of values to be labelled. If NULL, labels all unlabelled values that exist in
the data.

34 lbl_clean

Value

A labelled vector

See Also

Other lbl_helpers: lbl(), lbl_clean(), lbl_define(), lbl_na_if(), lbl_relabel(), zap_ipums_attributes()

Examples

x <- haven::labelled(
c(100, 200, 105, 990, 999, 230),
c(`Unknown` = 990, NIU = 999)

)

Add new labels manually
lbl_add(

x,
lbl(100, "$100"),
lbl(105, "$105"),
lbl(200, "$200"),
lbl(230, "$230")

)

Add labels for all unlabelled values
lbl_add_vals(x)

Update label names while adding
lbl_add_vals(x, labeller = ~ paste0("$", .))

Add labels for select values
lbl_add_vals(x, vals = c(100, 200))

lbl_clean Clean unused labels

Description

Remove labels that do not appear in the data. When converting labelled values to a factor, this
avoids the creation of additional factor levels.

Usage

lbl_clean(x)

Arguments

x A labelled vector

lbl_define 35

Value

A labelled vector

See Also

Other lbl_helpers: lbl(), lbl_add(), lbl_define(), lbl_na_if(), lbl_relabel(), zap_ipums_attributes()

Examples

x <- haven::labelled(
c(1, 2, 3, 1, 2, 3, 1, 2, 3),
c(Q1 = 1, Q2 = 2, Q3 = 3, Q4 = 4)

)

lbl_clean(x)

Compare the factor levels of the normal and cleaned labels after coercion
as_factor(lbl_clean(x))

as_factor(x)

lbl_define Define labels for an unlabelled vector

Description

Create a labelled vector from an unlabelled vector using lbl_relabel() syntax, allowing for the
grouping of multiple values into a single label. Values not assigned a label remain unlabelled.

Usage

lbl_define(x, ...)

Arguments

x An unlabelled vector
... Arbitrary number of two-sided formulas.

The left hand side should be a label placeholder created with lbl().
The right hand side should be a function taking .val that evaluates to TRUE for
all cases that should receive the label specified on the left hand side.
Can be provided as an anonymous function or formula. See Details section.

Details

Several lbl_*() functions include arguments that can be passed a function of .val and/or .lbl.
These refer to the existing values and labels in the input vector, respectively.

Use .val to refer to the values in the vector’s value labels. Use .lbl to refer to the label names in
the vector’s value labels.

Note that not all lbl_*() functions support both of these arguments.

36 lbl_na_if

Value

A labelled vector

See Also

Other lbl_helpers: lbl(), lbl_add(), lbl_clean(), lbl_na_if(), lbl_relabel(), zap_ipums_attributes()

Examples

age <- c(10, 12, 16, 18, 20, 22, 25, 27)

Group age values into two label groups.
Values not captured by the right hand side functions remain unlabelled
lbl_define(

age,
lbl(1, "Pre-college age") ~ .val < 18,
lbl(2, "College age") ~ .val >= 18 & .val <= 22

)

lbl_na_if Convert labelled data values to NA

Description

Convert data values in a labelled vector to NA based on the value labels associated with that vector.
Ignores values that do not have a label.

Usage

lbl_na_if(x, .predicate)

Arguments

x A labelled vector

.predicate A function taking .val and .lbl arguments that returns TRUE for all values that
should be converted to NA.
Can be provided as an anonymous function or formula. See Details section.

Details

Several lbl_*() functions include arguments that can be passed a function of .val and/or .lbl.
These refer to the existing values and labels in the input vector, respectively.

Use .val to refer to the values in the vector’s value labels. Use .lbl to refer to the label names in
the vector’s value labels.

Note that not all lbl_*() functions support both of these arguments.

lbl_relabel 37

Value

A labelled vector

See Also

Other lbl_helpers: lbl(), lbl_add(), lbl_clean(), lbl_define(), lbl_relabel(), zap_ipums_attributes()

Examples

x <- haven::labelled(
c(10, 10, 11, 20, 30, 99, 30, 10),
c(Yes = 10, `Yes - Logically Assigned` = 11, No = 20, Maybe = 30, NIU = 99)

)

Convert labelled values greater than 90 to `NA`
lbl_na_if(x, function(.val, .lbl) .val >= 90)

Can use purrr-style notation
lbl_na_if(x, ~ .lbl %in% c("Maybe"))

Or refer to named function
na_function <- function(.val, .lbl) .val >= 90
lbl_na_if(x, na_function)

lbl_relabel Modify value labels for a labelled vector

Description

Update the mapping between values and labels in a labelled vector. These functions allow you
to simultaneously update data values and the existing value labels. Modifying data values directly
does not result in updated value labels.

Use lbl_relabel() to manually specify new value/label mappings. This allows for the addition of
new labels.

Use lbl_collapse() to collapse detailed labels into more general categories. Values can be
grouped together and associated with individual labels that already exist in the labelled vector.

Unlabelled values will be converted to NA.

Usage

lbl_relabel(x, ...)

lbl_collapse(x, .fun)

38 lbl_relabel

Arguments

x A labelled vector

... Arbitrary number of two-sided formulas.
The left hand side should be a label placeholder created with lbl() or a value
that already exists in the data.
The right hand side should be a function taking .val and .lbl arguments that
evaluates to TRUE for all cases that should receive the label specified on the left
hand side.
Can be provided as an anonymous function or formula. See Details section.

.fun A function taking .val and .lbl arguments that returns the value associated
with an existing label in the vector. Input values to this function will be relabeled
with the label of the function’s output value.
Can be provided as an anonymous function or formula. See Details section.

Details

Several lbl_*() functions include arguments that can be passed a function of .val and/or .lbl.
These refer to the existing values and labels in the input vector, respectively.

Use .val to refer to the values in the vector’s value labels. Use .lbl to refer to the label names in
the vector’s value labels.

Note that not all lbl_*() functions support both of these arguments.

Value

A labelled vector

See Also

Other lbl_helpers: lbl(), lbl_add(), lbl_clean(), lbl_define(), lbl_na_if(), zap_ipums_attributes()

Examples

x <- haven::labelled(
c(10, 10, 11, 20, 21, 30, 99, 30, 10),
c(
Yes = 10, `Yes - Logically Assigned` = 11,
No = 20, Unlikely = 21, Maybe = 30, NIU = 99

)
)

Convert cases with value 11 to value 10 and associate with 10's label
lbl_relabel(x, 10 ~ .val == 11)
lbl_relabel(x, lbl("Yes") ~ .val == 11)

To relabel using new value/label pairs, use `lbl()` to define a new pair
lbl_relabel(

x,
lbl(10, "Yes/Yes-ish") ~ .val %in% c(10, 11),

read_ipums_ddi 39

lbl(90, "???") ~ .val == 99 | .lbl == "Maybe"
)

Collapse labels to create new label groups
lbl_collapse(x, ~ (.val %/% 10) * 10)

These are equivalent
lbl_collapse(x, ~ ifelse(.val == 10, 11, .val))
lbl_relabel(x, 11 ~ .val == 10)

read_ipums_ddi Read metadata about an IPUMS microdata extract from a DDI code-
book (.xml) file

Description

Reads the metadata about an IPUMS extract from a DDI codebook into an ipums_ddi object.

These metadata contains parsing instructions for the associated fixed-width data file, contextual
labels for variables and values in the data, and general extract information.

See Downloading IPUMS files below for information about downloading IPUMS DDI codebook
files.

Usage

read_ipums_ddi(
ddi_file,
lower_vars = FALSE,
file_select = deprecated(),
data_layer = deprecated()

)

Arguments

ddi_file Path to a DDI .xml file downloaded from IPUMS. See Downloading IPUMS
files below.

lower_vars Logical indicating whether to convert variable names to lowercase. Defaults to
FALSE for consistency with IPUMS conventions.

data_layer, file_select
[Deprecated] Reading DDI files contained in a .zip archive has been deprecated.
Please provide the full path to the .xml file to be loaded in ddi_file.

Value

An ipums_ddi object with metadata information.

https://ddialliance.org/learn/what-is-ddi
https://www.ipums.org/

40 read_ipums_ddi

Downloading IPUMS files

The DDI codebook (.xml) file provided with IPUMS microdata extracts can be downloaded through
the IPUMS extract interface or (for some collections) within R using the IPUMS API.

If using the IPUMS extract interface:

• Download the DDI codebook by right clicking on the DDI link in the Codebook column of
the extract interface and selecting Save as... (on Safari, you may have to select Download
Linked File As...). Be sure that the codebook is downloaded in .xml format.

If using the IPUMS API:

• For supported collections, use download_extract() to download a completed extract via the
IPUMS API. This automatically downloads both the DDI codebook and the data file from the
extract and returns the path to the codebook file.

See Also

read_ipums_micro(), read_ipums_micro_chunked() and read_ipums_micro_yield() to read
data from IPUMS microdata extracts.

ipums_var_info() and ipums_file_info() to view metadata about an ipums_ddi object.

ipums_list_files() to list files in an IPUMS extract.

Examples

Example codebook file
ddi_file <- ipums_example("cps_00157.xml")

Load data into an `ipums_ddi` obj
ddi <- read_ipums_ddi(ddi_file)

Use the object to load its associated data
cps <- read_ipums_micro(ddi)

head(cps)

Or get metadata information directly
ipums_var_info(ddi)

ipums_file_info(ddi)[1:2]

If variable metadata have been lost from a data source, reattach from
its corresponding `ipums_ddi` object:
cps <- zap_ipums_attributes(cps)

ipums_var_label(cps$STATEFIP)

cps <- set_ipums_var_attributes(cps, ddi$var_info)

ipums_var_label(cps$STATEFIP)

read_ipums_micro 41

read_ipums_micro Read data from an IPUMS microdata extract

Description

Read a microdata dataset downloaded from the IPUMS extract system.

Two files are required to load IPUMS microdata extracts:

• A DDI codebook file (.xml) used to parse the extract’s data file
• A data file (either .dat.gz or .csv.gz)

See Downloading IPUMS files below for more information about downloading these files.

read_ipums_micro() and read_ipums_micro_list() differ in their handling of extracts that con-
tain multiple record types. See Data structures below.

Note that Stata, SAS, and SPSS file formats are not supported by ipumsr readers. Convert your
extract to fixed-width or CSV format, or see haven for help loading these files.

Usage

read_ipums_micro(
ddi,
vars = NULL,
n_max = Inf,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE

)

read_ipums_micro_list(
ddi,
vars = NULL,
n_max = Inf,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE

)

Arguments

ddi Either a path to a DDI .xml file downloaded from IPUMS, or an ipums_ddi
object parsed by read_ipums_ddi(). See Downloading IPUMS files below.

vars Names of variables to include in the output. Accepts a vector of names or a
tidyselect selection. If NULL, includes all variables in the file.
For hierarchical data, the RECTYPE variable is always included even if unspeci-
fied.

https://ddialliance.org/learn/what-is-ddi
https://haven.tidyverse.org/index.html
https://www.ipums.org/

42 read_ipums_micro

n_max The maximum number of lines to read. For read_ipums_micro_list(), this
applies before splitting records into list components.

data_file Path to the data (.gz) file associated with the provided ddi file. By default, looks
for the data file in the same directory as the DDI file. If the data file has been
moved, specify its location here.

verbose Logical indicating whether to display IPUMS conditions and progress informa-
tion.

var_attrs Variable attributes from the DDI to add to the columns of the output data. De-
faults to all available attributes. See set_ipums_var_attributes() for more
details.

lower_vars If reading a DDI from a file, a logical indicating whether to convert variable
names to lowercase. Defaults to FALSE for consistency with IPUMS conven-
tions.

This argument will be ignored if argument ddi is an ipums_ddi object. Use
read_ipums_ddi() to convert variable names to lowercase when reading a DDI
file.

If lower_vars = TRUE and vars is specified, vars should reference the lower-
case column names.

Value

read_ipums_micro() returns a single tibble object.

read_ipums_micro_list() returns a list of tibble objects with one entry for each record type.

Data structures

Files from IPUMS projects that contain data for multiple types of records (e.g. household records
and person records) may be either rectangular or hierarchical.

Rectangular data are transformed such that each row of data represents only one type of record.
For instance, each row will represent a person record, and all household-level information for that
person will be included in the same row.

Hierarchical data have records of different types interspersed in a single file. For instance, a house-
hold record will be included in its own row followed by the person records associated with that
household.

Hierarchical data can be read in two different formats:

• read_ipums_micro() reads data into a tibble where each row represents a single record,
regardless of record type. Variables that do not apply to a particular record type will be filled
with NA in rows of that record type. For instance, a person-specific variable will be missing in
all rows associated with household records.

• read_ipums_micro_list() reads data into a list of tibble objects, where each list element
contains only one record type. Each list element is named with its corresponding record type.

read_ipums_micro 43

Downloading IPUMS files

You must download both the DDI codebook and the data file from the IPUMS extract system to load
the data into R. read_ipums_micro_*() functions assume that the data file and codebook share a
common base file name and are present in the same directory. If this is not the case, provide a
separate path to the data file with the data_file argument.

If using the IPUMS extract interface:

• Download the data file by clicking Download .dat under Download Data.

• Download the DDI codebook by right clicking on the DDI link in the Codebook column of
the extract interface and selecting Save as... (on Safari, you may have to select Download
Linked File as...). Be sure that the codebook is downloaded in .xml format.

If using the IPUMS API:

• For supported collections, use download_extract() to download a completed extract via the
IPUMS API. This automatically downloads both the DDI codebook and the data file from the
extract and returns the path to the codebook file.

See Also

read_ipums_micro_chunked() and read_ipums_micro_yield() to read data from large IPUMS
microdata extracts in chunks.

read_ipums_ddi() to read metadata associated with an IPUMS microdata extract.

read_ipums_sf() to read spatial data from an IPUMS extract.

ipums_list_files() to list files in an IPUMS extract.

Examples

Codebook for rectangular example file
cps_rect_ddi_file <- ipums_example("cps_00157.xml")

Load data based on codebook file info
cps <- read_ipums_micro(cps_rect_ddi_file)

head(cps)

Can also load data from a pre-existing `ipums_ddi` object
(This may be useful to retain codebook metadata even if lost from data
during processing)
ddi <- read_ipums_ddi(cps_rect_ddi_file)
cps <- read_ipums_micro(ddi, verbose = FALSE)

Codebook for hierarchical example file
cps_hier_ddi_file <- ipums_example("cps_00159.xml")

Read in "long" format to get a single data frame
read_ipums_micro(cps_hier_ddi_file, verbose = FALSE)

Read in "list" format and you get a list of multiple data frames
cps_list <- read_ipums_micro_list(cps_hier_ddi_file)

44 read_ipums_micro_chunked

head(cps_list$PERSON)

head(cps_list$HOUSEHOLD)

Use the `%<-%` operator from zeallot to unpack into separate objects
c(household, person) %<-% read_ipums_micro_list(cps_hier_ddi_file)

head(person)

head(household)

read_ipums_micro_chunked

Read data from an IPUMS microdata extract by chunk

Description

Read a microdata dataset downloaded from the IPUMS extract system in chunks.

Use these functions to read a file that is too large to store in memory at a single time. The file is
processed in chunks of a given size, with a provided callback function applied to each chunk.

Two files are required to load IPUMS microdata extracts:

• A DDI codebook file (.xml) used to parse the extract’s data file

• A data file (either .dat.gz or .csv.gz)

See Downloading IPUMS files below for more information about downloading these files.

read_ipums_micro_chunked() and read_ipums_micro_list_chunked() differ in their handling
of extracts that contain multiple record types. See Data structures below.

Note that Stata, SAS, and SPSS file formats are not supported by ipumsr readers. Convert your
extract to fixed-width or CSV format, or see haven for help loading these files.

Usage

read_ipums_micro_chunked(
ddi,
callback,
chunk_size = 10000,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE

)

read_ipums_micro_list_chunked(
ddi,

https://ddialliance.org/learn/what-is-ddi
https://haven.tidyverse.org/index.html

read_ipums_micro_chunked 45

callback,
chunk_size = 10000,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE

)

Arguments

ddi Either a path to a DDI .xml file downloaded from IPUMS, or an ipums_ddi
object parsed by read_ipums_ddi(). See Downloading IPUMS files below.

callback An ipums_callback object, or a function that will be converted to an IpumsSideEffectCallback
object. Callback functions should include both data (x) and position (pos) argu-
ments. See examples.

chunk_size Integer number of observations to read per chunk. Higher values use more
RAM, but typically result in faster processing. Defaults to 10,000.

vars Names of variables to include in the output. Accepts a vector of names or a
tidyselect selection. If NULL, includes all variables in the file.

For hierarchical data, the RECTYPE variable is always included even if unspeci-
fied.

data_file Path to the data (.gz) file associated with the provided ddi file. By default, looks
for the data file in the same directory as the DDI file. If the data file has been
moved, specify its location here.

verbose Logical indicating whether to display IPUMS conditions and progress informa-
tion.

var_attrs Variable attributes from the DDI to add to the columns of the output data. De-
faults to all available attributes. See set_ipums_var_attributes() for more
details.

lower_vars If reading a DDI from a file, a logical indicating whether to convert variable
names to lowercase. Defaults to FALSE for consistency with IPUMS conven-
tions.

This argument will be ignored if argument ddi is an ipums_ddi object. Use
read_ipums_ddi() to convert variable names to lowercase when reading a DDI
file.

Note that if reading in chunks from a .csv or .csv.gz file, the callback function
will be called before variable names are converted to lowercase, and thus should
reference uppercase variable names.

Value

Depends on the provided callback object. See ipums_callback.

https://www.ipums.org/

46 read_ipums_micro_chunked

Data structures

Files from IPUMS projects that contain data for multiple types of records (e.g. household records
and person records) may be either rectangular or hierarchical.

Rectangular data are transformed such that each row of data represents only one type of record.
For instance, each row will represent a person record, and all household-level information for that
person will be included in the same row.

Hierarchical data have records of different types interspersed in a single file. For instance, a house-
hold record will be included in its own row followed by the person records associated with that
household.

Hierarchical data can be read in two different formats:

• read_ipums_micro_chunked() reads each chunk of data into a tibble where each row rep-
resents a single record, regardless of record type. Variables that do not apply to a partic-
ular record type will be filled with NA in rows of that record type. For instance, a person-
specific variable will be missing in all rows associated with household records. The provided
callback function should therefore operate on a tibble object.

• read_ipums_micro_list_chunked() reads each chunk of data into a list of tibble objects,
where each list element contains only one record type. Each list element is named with its
corresponding record type. The provided callback function should therefore operate on a list
object. In this case, the chunk size references the total number of rows across record types,
rather than in each record type.

Downloading IPUMS files

You must download both the DDI codebook and the data file from the IPUMS extract system to load
the data into R. read_ipums_micro_*() functions assume that the data file and codebook share a
common base file name and are present in the same directory. If this is not the case, provide a
separate path to the data file with the data_file argument.

If using the IPUMS extract interface:

• Download the data file by clicking Download .dat under Download Data.
• Download the DDI codebook by right clicking on the DDI link in the Codebook column of

the extract interface and selecting Save as... (on Safari, you may have to select Download
Linked File as...). Be sure that the codebook is downloaded in .xml format.

If using the IPUMS API:

• For supported collections, use download_extract() to download a completed extract via the
IPUMS API. This automatically downloads both the DDI codebook and the data file from the
extract and returns the path to the codebook file.

See Also

read_ipums_micro_yield() for more flexible handling of large IPUMS microdata files.

read_ipums_micro() to read data from an IPUMS microdata extract.

read_ipums_ddi() to read metadata associated with an IPUMS microdata extract.

read_ipums_sf() to read spatial data from an IPUMS extract.

ipums_list_files() to list files in an IPUMS extract.

read_ipums_micro_chunked 47

Examples

suppressMessages(library(dplyr))

Example codebook file
cps_rect_ddi_file <- ipums_example("cps_00157.xml")

Function to extract Minnesota cases from CPS example
(This can also be accomplished by including case selections
in an extract definition)
#
Function must take `x` and `pos` to refer to data and row position,
respectively.
filter_mn <- function(x, pos) {

x[x$STATEFIP == 27,]
}

Initialize callback
filter_mn_callback <- IpumsDataFrameCallback$new(filter_mn)

Process data in chunks, filtering to MN cases in each chunk
read_ipums_micro_chunked(

cps_rect_ddi_file,
callback = filter_mn_callback,
chunk_size = 1000,
verbose = FALSE

)

Tabulate INCTOT average by state without storing full dataset in memory
read_ipums_micro_chunked(

cps_rect_ddi_file,
callback = IpumsDataFrameCallback$new(
function(x, pos) {

x %>%
mutate(

INCTOT = lbl_na_if(
INCTOT,
~ grepl("Missing|N.I.U.", .lbl)

)
) %>%
filter(!is.na(INCTOT)) %>%
group_by(STATEFIP = as_factor(STATEFIP)) %>%
summarize(INCTOT_SUM = sum(INCTOT), n = n(), .groups = "drop")

}
),
chunk_size = 1000,
verbose = FALSE

) %>%
group_by(STATEFIP) %>%
summarize(avg_inc = sum(INCTOT_SUM) / sum(n))

`x` will be a list when using `read_ipums_micro_list_chunked()`
read_ipums_micro_list_chunked(

48 read_ipums_micro_yield

ipums_example("cps_00159.xml"),
callback = IpumsSideEffectCallback$new(function(x, pos) {

print(
paste0(

nrow(x$PERSON), " persons and ",
nrow(x$HOUSEHOLD), " households in this chunk."

)
)

}),
chunk_size = 1000,
verbose = FALSE

)

Using the biglm package, you can even run a regression without storing
the full dataset in memory
if (requireNamespace("biglm")) {

lm_results <- read_ipums_micro_chunked(
ipums_example("cps_00160.xml"),
IpumsBiglmCallback$new(

INCTOT ~ AGE + HEALTH, # Model formula
function(x, pos) {

x %>%
mutate(

INCTOT = lbl_na_if(
INCTOT,
~ grepl("Missing|N.I.U.", .lbl)

),
HEALTH = as_factor(HEALTH)

)
}

),
chunk_size = 1000,
verbose = FALSE

)

summary(lm_results)
}

read_ipums_micro_yield

Read data from an IPUMS microdata extract in yields

Description

Read a microdata dataset downloaded from the IPUMS extract system into an object that can read
and operate on a group ("yield") of lines at a time. Use these functions to read a file that is
too large to store in memory at a single time. They represent a more flexible implementation of
read_ipums_micro_chunked() using R6.

Two files are required to load IPUMS microdata extracts:

read_ipums_micro_yield 49

• A DDI codebook file (.xml) used to parse the extract’s data file

• A data file (either .dat.gz or .csv.gz)

See Downloading IPUMS files below for more information about downloading these files.

read_ipums_micro_yield() and read_ipums_micro_list_yield() differ in their handling of
extracts that contain multiple record types. See Data structures below.

Note that these functions only support fixed-width (.dat) data files.

Usage

read_ipums_micro_yield(
ddi,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE

)

read_ipums_micro_list_yield(
ddi,
vars = NULL,
data_file = NULL,
verbose = TRUE,
var_attrs = c("val_labels", "var_label", "var_desc"),
lower_vars = FALSE

)

Arguments

ddi Either a path to a DDI .xml file downloaded from IPUMS, or an ipums_ddi
object parsed by read_ipums_ddi(). See Downloading IPUMS files below.

vars Names of variables to include in the output. Accepts a vector of names or a
tidyselect selection. If NULL, includes all variables in the file.
For hierarchical data, the RECTYPE variable is always included even if unspeci-
fied.

data_file Path to the data (.gz) file associated with the provided ddi file. By default, looks
for the data file in the same directory as the DDI file. If the data file has been
moved, specify its location here.

verbose Logical indicating whether to display IPUMS conditions and progress informa-
tion.

var_attrs Variable attributes from the DDI to add to the columns of the output data. De-
faults to all available attributes. See set_ipums_var_attributes() for more
details.

lower_vars If reading a DDI from a file, a logical indicating whether to convert variable
names to lowercase. Defaults to FALSE for consistency with IPUMS conven-
tions.

https://ddialliance.org/learn/what-is-ddi
https://www.ipums.org/

50 read_ipums_micro_yield

This argument will be ignored if argument ddi is an ipums_ddi object. Use
read_ipums_ddi() to convert variable names to lowercase when reading a DDI
file.
If lower_vars = TRUE and vars is specified, vars should reference the lower-
case column names.

Value

A HipYield R6 object (see Details section)

Methods summary:

These functions return a HipYield R6 object with the following methods:

• yield(n = 10000) reads the next "yield" from the data.
For read_ipums_micro_yield(), returns a tibble with up to n rows.
For read_ipums_micro_list_yield(), returns a list of tibbles with a total of up to n rows
across list elements.
If fewer than n rows are left in the data, returns all remaining rows. If no rows are left in the
data, returns NULL.

• reset() resets the data so that the next yield will read data from the start.

• is_done() returns a logical indicating whether all rows in the file have been read.

• cur_pos contains the next row number that will be read (1-indexed).

Data structures

Files from IPUMS projects that contain data for multiple types of records (e.g. household records
and person records) may be either rectangular or hierarchical.

Rectangular data are transformed such that each row of data represents only one type of record.
For instance, each row will represent a person record, and all household-level information for that
person will be included in the same row.

Hierarchical data have records of different types interspersed in a single file. For instance, a house-
hold record will be included in its own row followed by the person records associated with that
household.

Hierarchical data can be read in two different formats:

• read_ipums_micro_yield() produces an object that yields data as a tibble whose rows
represent single records, regardless of record type. Variables that do not apply to a particular
record type will be filled with NA in rows of that record type. For instance, a person-specific
variable will be missing in all rows associated with household records.

• read_ipums_micro_list_yield() produces an object that yields data as a list of tibble
objects, where each list element contains only one record type. Each list element is named
with its corresponding record type. In this case, when using yield(), n refers to the total
number of rows across record types, rather than in each record type.

read_ipums_micro_yield 51

Downloading IPUMS files

You must download both the DDI codebook and the data file from the IPUMS extract system to load
the data into R. read_ipums_micro_*() functions assume that the data file and codebook share a
common base file name and are present in the same directory. If this is not the case, provide a
separate path to the data file with the data_file argument.

If using the IPUMS extract interface:

• Download the data file by clicking Download .dat under Download Data.

• Download the DDI codebook by right clicking on the DDI link in the Codebook column of
the extract interface and selecting Save as... (on Safari, you may have to select Download
Linked File as...). Be sure that the codebook is downloaded in .xml format.

If using the IPUMS API:

• For supported collections, use download_extract() to download a completed extract via the
IPUMS API. This automatically downloads both the DDI codebook and the data file from the
extract and returns the path to the codebook file.

See Also

read_ipums_micro_chunked() to read data from large IPUMS microdata extracts in chunks.

read_ipums_micro() to read data from an IPUMS microdata extract.

read_ipums_ddi() to read metadata associated with an IPUMS microdata extract.

read_ipums_sf() to read spatial data from an IPUMS extract.

ipums_list_files() to list files in an IPUMS extract.

Examples

Create an IpumsLongYield object
long_yield <- read_ipums_micro_yield(ipums_example("cps_00157.xml"))

Yield the first 10 rows of the data
long_yield$yield(10)

Yield the next 20 rows of the data
long_yield$yield(20)

Check the current position after yielding 30 rows
long_yield$cur_pos

Reset to the beginning of the file
long_yield$reset()

Use a loop to flexibly process the data in pieces. Count all Minnesotans:
total_mn <- 0

while (!long_yield$is_done()) {
cur_data <- long_yield$yield(1000)
total_mn <- total_mn + sum(as_factor(cur_data$STATEFIP) == "Minnesota")

52 read_ipums_sf

}

total_mn

Can also read hierarchical data as list:
list_yield <- read_ipums_micro_list_yield(ipums_example("cps_00159.xml"))

Yield size is based on total rows for all list elements
list_yield$yield(10)

read_ipums_sf Read spatial data from an IPUMS extract

Description

Read a spatial data file (also referred to as a GIS file or shapefile) from an IPUMS extract into an
sf object from the sf package.

Usage

read_ipums_sf(
shape_file,
file_select = NULL,
vars = NULL,
encoding = NULL,
bind_multiple = FALSE,
add_layer_var = NULL,
verbose = FALSE,
shape_layer = deprecated()

)

Arguments

shape_file Path to a single .shp file or a .zip archive containing at least one .shp file. See
Details section.

file_select If shape_file is a .zip archive that contains multiple files, an expression iden-
tifying the files to load. Accepts a character string specifying the file name, a
tidyselect selection, or index position. If multiple files are selected, bind_multiple
must be equal to TRUE.

vars Names of variables to include in the output. Accepts a character vector of names
or a tidyselect selection. If NULL, includes all variables in the file.

encoding Encoding to use when reading the shape file. If NULL, defaults to "latin1"
unless the file includes a .cpg metadata file with encoding information. The
default value should generally be appropriate.

bind_multiple If TRUE and shape_file contains multiple .shp files, row-bind the files into a
single sf object. Useful when shape_file contains multiple files that represent
the same geographic units for different extents (e.g. block-level data for multiple
states).

https://r-spatial.github.io/sf/

read_ipums_sf 53

add_layer_var If TRUE, add a variable to the output data indicating the file that each row origi-
nates from. Defaults to FALSE unless bind_multiple = TRUE and multiple files
exist in shape_file.
The column name will always be prefixed with "layer", but will be adjusted
to avoid name conflicts if another column named "layer" already exists in the
data.

verbose If TRUE report additional progress information on load.

shape_layer [Deprecated] Please use file_select instead.

Details

Some IPUMS products provide shapefiles in a "nested" .zip archive. That is, each shapefile (includ-
ing a .shp as well as accompanying files) is compressed in its own archive, and the collection of all
shapefiles provided in an extract is also compressed into a single .zip archive.

read_ipums_sf() is designed to handle this structure. However, if any files are altered such that
an internal .zip archive contains multiple shapefiles, this function will throw an error. If this is the
case, you may need to manually unzip the downloaded file before loading it into R.

Value

An sf object

See Also

read_ipums_micro() or read_nhgis() to read tabular data from an IPUMS extract.

ipums_list_files() to list files in an IPUMS extract.

Examples

Example shapefile from NHGIS
shape_ex1 <- ipums_example("nhgis0972_shape_small.zip")
data_ex1 <- read_nhgis(ipums_example("nhgis0972_csv.zip"), verbose = FALSE)

sf_data <- read_ipums_sf(shape_ex1)

sf_data

To combine spatial data with tabular data without losing the attributes
included in the tabular data, use an ipums shape join:
ipums_shape_full_join(data_ex1, sf_data, by = "GISJOIN")

shape_ex2 <- ipums_example("nhgis0712_shape_small.zip")

Shapefiles are provided in .zip archives that may contain multiple
files. Select a single file with `file_select`:
read_ipums_sf(shape_ex2, file_select = matches("us_pmsa_1990"))

Or row-bind files with `bind_multiple`. This may be useful for files of
the same geographic level that cover different extents)
read_ipums_sf(

54 read_nhgis

shape_ex2,
file_select = matches("us_pmsa"),
bind_multiple = TRUE

)

read_nhgis Read tabular data from an NHGIS extract

Description

Read a csv or fixed-width (.dat) file downloaded from the NHGIS extract system.

To read spatial data from an NHGIS extract, use read_ipums_sf().

Usage

read_nhgis(
data_file,
file_select = NULL,
vars = NULL,
col_types = NULL,
n_max = Inf,
guess_max = min(n_max, 1000),
do_file = NULL,
var_attrs = c("val_labels", "var_label", "var_desc"),
remove_extra_header = TRUE,
verbose = TRUE,
data_layer = deprecated()

)

Arguments

data_file Path to a .zip archive containing an NHGIS extract or a single file from an
NHGIS extract.

file_select If data_file is a .zip archive that contains multiple files, an expression iden-
tifying the file to load. Accepts a character vector specifying the file name, a
tidyselect selection, or an index position. This must uniquely identify a file.

vars Names of variables to include in the output. Accepts a vector of names or a
tidyselect selection. If NULL, includes all variables in the file.

col_types One of NULL, a cols() specification or a string. If NULL, all column types will
be inferred from the values in the first guess_max rows of each column. Alter-
natively, you can use a compact string representation to specify column types:

• c = character
• i = integer
• n = number

read_nhgis 55

• d = double
• l = logical
• f = factor
• D = date
• T = date time
• t = time
• ? = guess
• _ or - = skip

See read_delim() for more details.

n_max Maximum number of lines to read.

guess_max For .csv files, maximum number of lines to use for guessing column types. Will
never use more than the number of lines read.

do_file For fixed-width files, path to the .do file associated with the provided data_file.
The .do file contains the parsing instructions for the data file.
By default, looks in the same path as data_file for a .do file with the same
name. See Details section below.

var_attrs Variable attributes to add from the codebook (.txt) file included in the extract.
Defaults to all available attributes.
See set_ipums_var_attributes() for more details.

remove_extra_header

If TRUE, remove the additional descriptive header row included in some NHGIS
.csv files.
This header row is not usually needed as it contains similar information to that
included in the "label" attribute of each data column (if var_attrs includes
"var_label").

verbose Logical controlling whether to display output when loading data. If TRUE, dis-
plays IPUMS conditions, a progress bar, and column types. Otherwise, all are
suppressed.
Will be overridden by readr.show_progress and readr.show_col_types op-
tions, if they are set.

data_layer [Deprecated] Please use file_select instead.

Details

The .do file that is included when downloading an NHGIS fixed-width extract contains the nec-
essary metadata (e.g. column positions and implicit decimals) to correctly parse the data file.
read_nhgis() uses this information to parse and recode the fixed-width data appropriately.

If you no longer have access to the .do file, consider resubmitting the extract that produced the data.
You can also change the desired data format to produce a .csv file, which does not require additional
metadata files to be loaded.

For more about resubmitting an existing extract via the IPUMS API, see vignette("ipums-api",
package = "ipumsr").

56 read_nhgis_codebook

Value

A tibble containing the data found in data_file

See Also

read_ipums_sf() to read spatial data from an IPUMS extract.

read_nhgis_codebook() to read metadata about an IPUMS NHGIS extract.

ipums_list_files() to list files in an IPUMS extract.

Examples

Example files
csv_file <- ipums_example("nhgis0972_csv.zip")
fw_file <- ipums_example("nhgis0730_fixed.zip")

Provide the .zip archive directly to load the data inside:
read_nhgis(csv_file)

For extracts that contain multiple files, use `file_select` to specify
a single file to load. This accepts a tidyselect expression:
read_nhgis(fw_file, file_select = matches("ds239"), verbose = FALSE)

Or an index position:
read_nhgis(fw_file, file_select = 2, verbose = FALSE)

For CSV files, column types are inferred from the data. You can
manually specify column types with `col_types`. This may be useful for
geographic codes, which should typically be interpreted as character values
read_nhgis(csv_file, col_types = list(MSA_CMSAA = "c"), verbose = FALSE)

Fixed-width files are parsed with the correct column positions
and column types automatically:
read_nhgis(fw_file, file_select = contains("ts"), verbose = FALSE)

You can also read in a subset of the data file:
read_nhgis(

csv_file,
n_max = 15,
vars = c(GISJOIN, YEAR, D6Z002),
verbose = FALSE

)

read_nhgis_codebook Read metadata from an NHGIS codebook (.txt) file

read_nhgis_codebook 57

Description

[Experimental]
Read the variable metadata contained in the .txt codebook file included with NHGIS extracts into
an ipums_ddi object.

Because NHGIS variable metadata do not adhere to all the standards of microdata DDI files, some
of the ipums_ddi fields will not be populated.

This function is marked as experimental while we determine whether there may be a more robust
way to standardize codebook and DDI reading across IPUMS collections.

Usage

read_nhgis_codebook(cb_file, file_select = NULL, raw = FALSE)

Arguments

cb_file Path to a .zip archive containing an NHGIS extract or to an NHGIS codebook
(.txt) file.

file_select If cb_file is a .zip archive or directory that contains multiple codebook files,
an expression identifying the file to read. Accepts a character string specifying
the file name, a tidyselect selection, or an index position of the file. Ignored if
cb_file is the path to a single codebook file.

raw If TRUE, return a character vector containing the lines of cb_file rather than an
ipums_ddi object. Defaults to FALSE.

Value

If raw = FALSE, an ipums_ddi object with information on the variables contained in the data for the
extract associated with the given cb_file.

If raw = TRUE, a character vector with one element for each line of the given cb_file.

See Also

read_nhgis() to read tabular data from an IPUMS NHGIS extract.

read_ipums_sf() to read spatial data from an IPUMS extract.

ipums_list_files() to list files in an IPUMS extract.

Examples

Example file
nhgis_file <- ipums_example("nhgis0972_csv.zip")

Read codebook as an `ipums_ddi` object:
codebook <- read_nhgis_codebook(nhgis_file)

Variable-level metadata about the contents of the data file:
ipums_var_info(codebook)

58 save_extract_as_json

ipums_var_label(codebook, "PMSA")

If variable metadata have been lost from a data source, reattach from
the corresponding `ipums_ddi` object:
nhgis_data <- read_nhgis(nhgis_file, verbose = FALSE)

nhgis_data <- zap_ipums_attributes(nhgis_data)
ipums_var_label(nhgis_data$PMSA)

nhgis_data <- set_ipums_var_attributes(nhgis_data, codebook$var_info)
ipums_var_label(nhgis_data$PMSA)

You can also load the codebook in raw format to display in the console
codebook_raw <- read_nhgis_codebook(nhgis_file, raw = TRUE)

Use `cat` for human-readable output
cat(codebook_raw[1:20], sep = "\n")

save_extract_as_json Store an extract definition in JSON format

Description

Write an ipums_extract object to a JSON file, or read an extract definition from such a file.

Use these functions to store a copy of an extract definition outside of your R environment and/or
share an extract definition with another registered IPUMS user.

Learn more about the IPUMS API in vignette("ipums-api").

Usage

save_extract_as_json(extract, file, overwrite = FALSE)

define_extract_from_json(extract_json)

Arguments

extract An ipums_extract object.

file File path to which to write the JSON-formatted extract definition.

overwrite If TRUE, overwrite file if it already exists. Defaults to FALSE.

extract_json Path to a file containing a JSON-formatted extract definition.

Value

An ipums_extract object.

save_extract_as_json 59

API Version Compatibility

As of v0.6.0, ipumsr only supports IPUMS API version 2. If you have stored an extract definition
made using version beta or version 1 of the IPUMS API, you will not be able to load it using
define_extract_from_json(). The API version for the request should be stored in the saved
JSON file. (If there is no "api_version" or "version" field in the JSON file, the request was
likely made under version beta or version 1.)

If the extract definition was originally made under your user account and you know its correspond-
ing extract number, use get_extract_info() to obtain a definition compliant with IPUMS API
version 2. You can then save this definition to JSON with save_extract_as_json().

Otherwise, you will need to update the JSON file to be compliant with IPUMS API version 2. In
general, this should only require renaming all JSON fields written in snake_case to camelCase.
For instance, "data_tables" would become "dataTables", "data_format" would become "dataFormat",
and so on. You will also need to change the "api_version" field to "version" and set it equal
to 2. If you are unable to create a valid extract by modifying the file, you may have to recreate the
definition manually using the define_extract_micro() or define_extract_nhgis().

See the IPUMS developer documentation for more details on API versioning and breaking changes
introduced in version 2.

See Also

define_extract_micro() or define_extract_nhgis() to define an extract request manually

get_extract_info() to obtain a past extract to save.

submit_extract() to submit an extract request for processing.

add_to_extract() and remove_from_extract() to revise an extract definition.

Examples

my_extract <- define_extract_micro(
collection = "usa",
description = "2013-2014 ACS Data",
samples = c("us2013a", "us2014a"),
variables = c("SEX", "AGE", "YEAR")

)

extract_json_path <- file.path(tempdir(), "usa_extract.json")
save_extract_as_json(my_extract, file = extract_json_path)

copy_of_my_extract <- define_extract_from_json(extract_json_path)

identical(my_extract, copy_of_my_extract)

file.remove(extract_json_path)

https://developer.ipums.org/docs/apiprogram/versioning/
https://developer.ipums.org/docs/apiprogram/changelog/

60 set_ipums_api_key

set_ipums_api_key Set your IPUMS API key

Description

Set your IPUMS API key as the value associated with the IPUMS_API_KEY environment variable.

The key can be stored for the duration of your session or for future sessions. If saved for future
sessions, it is added to the .Renviron file in your home directory. If you choose to save your key
to .Renviron, this function will create a backup copy of the file before modifying.

This function is modeled after the census_api_key() function from tidycensus.

Learn more about the IPUMS API in vignette("ipums-api").

Usage

set_ipums_api_key(api_key, save = overwrite, overwrite = FALSE, unset = FALSE)

Arguments

api_key API key associated with your user account.

save If TRUE, save the key for use in future sessions by adding it to the .Renviron
file in your home directory. Defaults to FALSE, unless overwrite = TRUE.

overwrite If TRUE, overwrite any existing value of IPUMS_API_KEY in the .Renviron file
with the provided api_key. Defaults to FALSE.

unset If TRUE, remove the existing value of IPUMS_API_KEY from the environment and
the .Renviron file in your home directory.

Value

The value of api_key, invisibly.

See Also

set_ipums_default_collection() to set a default collection.

https://walker-data.com/tidycensus/

set_ipums_default_collection 61

set_ipums_default_collection

Set your default IPUMS collection

Description

Set the default IPUMS collection as the value associated with the IPUMS_DEFAULT_COLLECTION
environment variable. If this environment variable exists, IPUMS API functions that require a col-
lection specification will use the value of IPUMS_DEFAULT_COLLECTION, unless another collection
is indicated.

The default collection can be stored for the duration of your session or for future sessions. If saved
for future sessions, it is added to the .Renviron file in your home directory. If you choose to save
your key to .Renviron, this function will create a backup copy of the file before modifying.

This function is modeled after the census_api_key() function from tidycensus.

Learn more about the IPUMS API in vignette("ipums-api").

Usage

set_ipums_default_collection(
collection = NULL,
save = overwrite,
overwrite = FALSE,
unset = FALSE

)

Arguments

collection Character string of the collection to set as your default collection. The collection
must currently be supported by the IPUMS API.
For a list of codes used to refer to each collection, see ipums_data_collections().

save If TRUE, save the default collection for use in future sessions by adding it to the
.Renviron file in your home directory. Defaults to FALSE, unless overwrite =
TRUE.

overwrite If TRUE, overwrite any existing value of IPUMS_DEFAULT_COLLECTION in the
.Renviron file with the provided collection. Defaults to FALSE.

unset if TRUE, remove the existing value of IPUMS_DEFAULT_COLLECTION from the
environment and the .Renviron file in your home directory.

Value

The value of collection, invisibly.

See Also

set_ipums_api_key() to set an API key.

https://walker-data.com/tidycensus/

62 set_ipums_var_attributes

Examples

set_ipums_default_collection("nhgis")

Not run:
Extract info will now be retrieved for the default collection:
get_last_extract_info()
get_extract_history()

is_extract_ready(1)
get_extract_info(1)

Equivalent to:
get_extract_info("nhgis:1")
get_extract_info(c("nhgis", 1))

Other collections can be specified explicitly
Doing so does not alter the default collection
is_extract_ready("usa:2")

End(Not run)

Remove the variable from the environment and .Renviron, if saved
set_ipums_default_collection(unset = TRUE)

set_ipums_var_attributes

Add IPUMS variable attributes to a data frame

Description

Add variable attributes from an ipums_ddi object to a data frame. These provide contextual infor-
mation about the variables and values contained in the data columns.

Most ipumsr data-reading functions automatically add these attributes. However, some data pro-
cessing operations may remove attributes, or you may wish to store data in an external database that
does not support these attributes. In these cases, use this function to manually attach this informa-
tion.

Usage

set_ipums_var_attributes(
data,
var_info,
var_attrs = c("val_labels", "var_label", "var_desc")

)

set_ipums_var_attributes 63

Arguments

data tibble or data frame

var_info An ipums_ddi object or a data frame containing variable information. Variable
information can be obtained by calling ipums_var_info() on an ipums_ddi
object.

var_attrs Variable attributes from the DDI to add to the columns of the output data. De-
faults to all available attributes.

Details

Attribute val_labels adds the haven_labelled class and the corresponding value labels for appli-
cable variables. For more about the haven_labelled class, see vignette("semantics", package
= "haven").

Attribute var_label adds a short summary of the variable’s contents to the "label" attribute. This
label is viewable in the RStudio Viewer.

Attribute var_desc adds a longer description of the variable’s contents to the "var_desc" attribute,
when available.

Variable information is attached to the data by column name. If column names in data do not match
those found in var_info, attributes will not be added.

Value

data, with variable attributes attached

Examples

ddi_file <- ipums_example("cps_00157.xml")

Load metadata into `ipums_ddi` object
ddi <- read_ipums_ddi(ddi_file)

Load data
cps <- read_ipums_micro(ddi)

Data includes variable metadata:
ipums_var_desc(cps$INCTOT)

Some operations remove attributes, even if they do not alter the data:
cps$INCTOT <- ifelse(TRUE, cps$INCTOT, NA)
ipums_var_desc(cps$INCTOT)

We can reattach metadata from the separate `ipums_ddi` object:
cps <- set_ipums_var_attributes(cps, ddi)
ipums_var_desc(cps$INCTOT)

64 submit_extract

submit_extract Submit an extract request via the IPUMS API

Description

Submit an extract request via the IPUMS API and return an ipums_extract object containing the
extract definition with a newly-assigned extract request number.

Learn more about the IPUMS API in vignette("ipums-api").

Usage

submit_extract(extract, api_key = Sys.getenv("IPUMS_API_KEY"))

Arguments

extract An ipums_extract object.

api_key API key associated with your user account. Defaults to the value of the IPUMS_API_KEY
environment variable. See set_ipums_api_key().

Value

An ipums_extract object containing the extract definition and newly-assigned extract number of
the submitted extract.

Note that some unspecified extract fields may be populated with default values and therefore change
slightly upon submission.

See Also

wait_for_extract() to wait for an extract to finish processing.

get_extract_info() and is_extract_ready() to check the status of an extract request.

download_extract() to download an extract’s data files.

Examples

my_extract <- define_extract_micro(
collection = "cps",
description = "2018-2019 CPS Data",
samples = c("cps2018_05s", "cps2019_05s"),
variables = c("SEX", "AGE", "YEAR")

)

Not run:
Store your submitted extract request to obtain the extract number
submitted_extract <- submit_extract(my_extract)

submitted_extract$number

wait_for_extract 65

This is useful for checking the extract request status
get_extract_info(submitted_extract)

You can always get the latest status, even if you forget to store the
submitted extract request object
submitted_extract <- get_last_extract_info("cps")

You can also check if submitted extract is ready
is_extract_ready(submitted_extract)

Or have R check periodically and download when ready
downloadable_extract <- wait_for_extract(submitted_extract)

End(Not run)

wait_for_extract Wait for an extract request to finish processing

Description

Wait for an extract request to finish by periodically checking its status via the IPUMS API until it
is complete.

is_extract_ready() is a convenience function to check if an extract is ready to download without
committing your R session to waiting for extract completion.

Learn more about the IPUMS API in vignette("ipums-api").

Usage

wait_for_extract(
extract,
initial_delay_seconds = 0,
max_delay_seconds = 300,
timeout_seconds = 10800,
verbose = TRUE,
api_key = Sys.getenv("IPUMS_API_KEY")

)

is_extract_ready(extract, api_key = Sys.getenv("IPUMS_API_KEY"))

Arguments

extract One of:

• An ipums_extract object
• The data collection and extract number formatted as a string of the form
"collection:number" or as a vector of the form c("collection", number)

• An extract number to be associated with your default IPUMS collection.
See set_ipums_default_collection()

66 wait_for_extract

For a list of codes used to refer to each collection, see ipums_data_collections().
initial_delay_seconds

Seconds to wait before first status check. The wait time will automatically in-
crease by 10 seconds between each successive check.

max_delay_seconds

Maximum interval to wait between status checks. When the wait interval reaches
this value, checks will continue to occur at max_delay_seconds intervals until
the extract is complete or timeout_seconds is reached. Defaults to 300 seconds
(5 minutes).

timeout_seconds

Maximum total number of seconds to continue waiting for the extract before
throwing an error. Defaults to 10,800 seconds (3 hours).

verbose If TRUE, print status updates to the R console at the beginning of each wait inter-
val and upon extract completion. Defaults to TRUE.

api_key API key associated with your user account. Defaults to the value of the IPUMS_API_KEY
environment variable. See set_ipums_api_key().

Details

The status of a submitted extract will be one of "queued", "started", "produced", "canceled",
"failed", or "completed".

To be ready to download, an extract must have a "completed" status. However, some requests that
are "completed" may still be unavailable for download, as extracts expire and are removed from
IPUMS servers after a set period of time (72 hours for microdata collections, 2 weeks for IPUMS
NHGIS).

Therefore, these functions also check the download_links field of the extract request to determine
if data are available for download. If an extract has expired (that is, it has completed but its download
links are no longer available), these functions will warn that the extract request must be resubmitted.

Value

For wait_for_extract(), an ipums_extract object containing the extract definition and the
URLs from which to download extract files.

For is_extract_ready(), a logical value indicating whether the extract is ready to download.

See Also

download_extract() to download an extract’s data files.

get_extract_info() to obtain the definition of a submitted extract request.

Examples

my_extract <- define_extract_micro(
collection = "ipumsi",
description = "Botswana data",
samples = c("bw2001a", "bw2011a"),
variables = c("SEX", "AGE", "YEAR")

zap_ipums_attributes 67

)

Not run:
submitted_extract <- submit_extract(my_extract)

Wait for a particular extract request to complete by providing its
associated `ipums_extract` object:
downloadable_extract <- wait_for_extract(submitted_extract)

Or by specifying the collection and number for the extract request:
downloadable_extract <- wait_for_extract("ipumsi:1")

If you have a default collection, you can use the extract number alone:
set_ipums_default_collection("ipumsi")

downloadable_extract <- wait_for_extract(1)

Use `download_extract()` to download the completed extract:
files <- download_extract(downloadable_extract)

Use `is_extract_ready()` if you don't want to tie up your R session by
waiting for completion
is_extract_ready("usa:1")

End(Not run)

zap_ipums_attributes Remove label attributes from a data frame or labelled vector

Description

Remove all label attributes (value labels, variable labels, and variable descriptions) from a data
frame or vector.

Usage

zap_ipums_attributes(x)

Arguments

x A data frame or labelled vector (for instance, from a data frame column)

Value

An object of the same type as x without "val_labels", "var_label", and "var_desc" attributes.

See Also

Other lbl_helpers: lbl(), lbl_add(), lbl_clean(), lbl_define(), lbl_na_if(), lbl_relabel()

68 zap_ipums_attributes

Examples

cps <- read_ipums_micro(ipums_example("cps_00157.xml"))

attributes(cps$YEAR)
attributes(zap_ipums_attributes(cps$YEAR))

cps <- zap_ipums_attributes(cps)
attributes(cps$YEAR)
attributes(cps$INCTOT)

Index

∗ lbl_helpers
lbl, 32
lbl_add, 33
lbl_clean, 34
lbl_define, 35
lbl_na_if, 36
lbl_relabel, 37
zap_ipums_attributes, 67

add_to_extract(), 59

collect(), 21
cols(), 54

define_extract_cps
(define_extract_micro), 3

define_extract_from_json
(save_extract_as_json), 58

define_extract_from_json(), 5, 8, 15, 24
define_extract_ipumsi

(define_extract_micro), 3
define_extract_micro, 3
define_extract_micro(), 24, 59
define_extract_nhgis, 6
define_extract_nhgis(), 18, 24, 59
define_extract_usa

(define_extract_micro), 3
download_extract, 10
download_extract(), 15, 24, 40, 43, 46, 51,

64, 66
dplyr::bind_rows(), 20
dplyr::left_join(), 27
ds_spec(), 7, 8

get_extract_history, 12
get_extract_history(), 14, 15, 24
get_extract_info, 14
get_extract_info(), 12, 24, 59, 64, 66
get_last_extract_info

(get_extract_info), 14

get_metadata_nhgis, 16
get_metadata_nhgis(), 6–8
get_sample_info(), 3

haven::labelled(), 28
haven_labelled, 63

ipums_bind_rows, 20
ipums_callback, 45
ipums_collect, 21
ipums_conditions (ipums_file_info), 24
ipums_data_collections, 21
ipums_data_collections(), 3, 10, 12, 15,

31, 61, 66
ipums_ddi, 21, 24, 28–31, 39–42, 45, 49, 50,

57, 62, 63
ipums_example, 22
ipums_extract, 10, 12, 15, 58, 64–66
ipums_extract (ipums_extract-class), 23
ipums_extract-class, 23
ipums_file_info, 24
ipums_file_info(), 40
ipums_list_files, 25
ipums_list_files(), 11, 40, 43, 46, 51, 53,

56, 57
ipums_shape_full_join

(ipums_shape_join), 26
ipums_shape_inner_join

(ipums_shape_join), 26
ipums_shape_join, 26
ipums_shape_left_join

(ipums_shape_join), 26
ipums_shape_right_join

(ipums_shape_join), 26
ipums_val_labels (ipums_var_info), 28
ipums_var_desc (ipums_var_info), 28
ipums_var_info, 28
ipums_var_info(), 40
ipums_var_label (ipums_var_info), 28
ipums_view, 29

69

70 INDEX

ipums_website, 30
IpumsListYield

(read_ipums_micro_yield), 48
IpumsLongYield

(read_ipums_micro_yield), 48
is_extract_ready (wait_for_extract), 65
is_extract_ready(), 24, 64

joins, 26

labelled, 33–38, 67
lbl, 32, 34–38, 67
lbl(), 33, 35, 38
lbl_add, 32, 33, 35–38, 67
lbl_add(), 32
lbl_add_vals (lbl_add), 33
lbl_clean, 32, 34, 34, 36–38, 67
lbl_collapse (lbl_relabel), 37
lbl_define, 32, 34, 35, 35, 37, 38, 67
lbl_na_if, 32, 34–36, 36, 38, 67
lbl_relabel, 32, 34–37, 37, 67
lbl_relabel(), 32, 35

micro_extract, 5

nhgis_extract, 8

read_delim(), 55
read_ipums_ddi, 39
read_ipums_ddi(), 21, 29, 41–43, 45, 46,

49–51
read_ipums_micro, 41
read_ipums_micro(), 11, 26, 40, 46, 51, 53
read_ipums_micro_chunked, 44
read_ipums_micro_chunked(), 40, 43, 48,

51
read_ipums_micro_list

(read_ipums_micro), 41
read_ipums_micro_list_chunked

(read_ipums_micro_chunked), 44
read_ipums_micro_list_yield

(read_ipums_micro_yield), 48
read_ipums_micro_yield, 48
read_ipums_micro_yield(), 40, 43, 46
read_ipums_sf, 52
read_ipums_sf(), 11, 26, 27, 43, 46, 51, 54,

56, 57
read_nhgis, 54
read_nhgis(), 8, 11, 26, 53, 57

read_nhgis_codebook, 56
read_nhgis_codebook(), 29, 56
remove_from_extract(), 59

save_extract_as_json, 58
save_extract_as_json(), 5, 8, 15, 24
set_ipums_api_key, 60
set_ipums_api_key(), 11, 12, 15, 17, 61, 64,

66
set_ipums_default_collection, 61
set_ipums_default_collection(), 10, 12,

15, 60, 65
set_ipums_var_attributes, 62
set_ipums_var_attributes(), 21, 42, 45,

49, 55
sf, 26, 27, 53
submit_extract, 64
submit_extract(), 5, 8, 24, 59

tibble, 17, 18, 21, 22, 26, 28, 29, 42, 46, 50,
56, 63

tibbles, 20
tidyselect selection, 25, 28, 41, 45, 49,

52, 54, 57
tst_spec(), 7, 8
tu_var_spec(), 4

var_spec(), 3, 4

wait_for_extract, 65
wait_for_extract(), 15, 24, 64

zap_ipums_attributes, 32, 34–38, 67

	define_extract_micro
	define_extract_nhgis
	download_extract
	get_extract_history
	get_extract_info
	get_metadata_nhgis
	ipums_bind_rows
	ipums_collect
	ipums_data_collections
	ipums_example
	ipums_extract-class
	ipums_file_info
	ipums_list_files
	ipums_shape_join
	ipums_var_info
	ipums_view
	ipums_website
	lbl
	lbl_add
	lbl_clean
	lbl_define
	lbl_na_if
	lbl_relabel
	read_ipums_ddi
	read_ipums_micro
	read_ipums_micro_chunked
	read_ipums_micro_yield
	read_ipums_sf
	read_nhgis
	read_nhgis_codebook
	save_extract_as_json
	set_ipums_api_key
	set_ipums_default_collection
	set_ipums_var_attributes
	submit_extract
	wait_for_extract
	zap_ipums_attributes
	Index

